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INTRODUCTION

This report presents a study of the indirect boundary element

method and its potential advantages for solving one- and two-dimensional

linear structural/stress analysis problems. Currently, the finite

element method is very capable of performing these tasks. However, the

boundary element method potentially offers an opportunity for increased

productivity in these areas.

Backaround

Because the application of the boundary element method requires

only that the boundary of the structure be subdivided, as contrasted

with the requirement that the entire domain of the structure be sub-

divided when applying the finite element method, the boundary element

method may increase productivity in linear structural analysis. Some-

times the former method is called a boundary method and the latter a

domain method.

A good account of boundary element methods from the perspective of

finite element methods can be found in Reference 1. There are two

types of boundary element methods: a direct method and an indirect

method. The difference between the two methods is not easily explained

in a brief manner. The indirect method is rather intuitive, while the

direct method is more formal. Both methods are equally effective in

general. A comparison of indirect and direct boundary element methods

can be found in Reference 2. An early treatment of indirect boundary

methods can be found in Reference 3.

Accuracy aside for the moment, the effectiveness of any numerical

stress analysis procedure depends primarily on the manual effort required

for pre- and post-processing of the required input and output data, and

to a lesser extent on the computer usage cost of the associated structural

1 ' ' " " i . . .1 . . . . ...p. ... - p~. " ' .. . . .- , - ' ' ' - " ',- - " .



computer program. The boundary element method requires considerably

less input and output data preparation, particularly input data, because

fewer subdivisions are necessary to describe the structure boundary than

the structure itself. The manual effort associated with pre- and post-

processing finite element data is often very considerable and frus-

tratingly long, notwithstanding the advantages of current automated

techniques. (Obviously, such techniques are also applicable to the
boundary element methods as well. ) Thus, the boundary element methods
offer potential savings by reducing the manual labor of the stress

analyst and the engineering technician, particularly at the input data

level, for a given structural problem.

The second advantage of the boundary element method involves reduced

computational effort in the structural analysis computer program. In

linear, static structural analysis by-the finite element method it is

well known that most of the computational cost lies in the solution of

the system of linear algebraic equations that result from the finite

element subdivision. In finite element computer programs very effective

Gaussian elimination, equation-solving algorithms have evolved that

minimize this cost (Ref 4). However, for the same structural analysis

problem, the number of linear algebraic equations that must be solved

when employing the boundary element method is generally far smaller than

in the finite element method. This is because the boundary element

approach immediately reduces the structural problem by one dimension due

to the necessity of having only to subdivide the boundary of the struc-

ture. Thus, three-dimensional problems, as in the stress analysis of

solids, are reduced to two-dimensional problems; two-dimensional problems,

as in the stress analysis of membranelike plates, are reduced to one-dimensional

problems; and one-dimensional problems, as in the analysis of beams, are

reduced to what can be termed "point problems." In theory, this amounts

to a distinct computational advantage of the boundary element method

over the ubiquitous finite element method. There are mitigating

considerations, however. In the case of a materially homogeneous problem,

for example, the coefficient matrix in the linear algebraic system is

full in the boundary element method, whereas the coefficient matrix,

though such larger, is both sparse and symmetric in the finite element

method.

2



Objective

The objective of this study is to assess the accuracy and potential

of the indirect boundary element method in linear structural analysis

through numerical experimentation. The indirect boundary element method

is to be explicated and then demonstrated by developing a one-dimensional

computer program and a two-dimensional computer program. Another objec-

tive is to determine the suitability of the method as a structural/stress

analysis tool when implemented on microcomputers.

Scope

The theoretical formulation of the indirect boundary element method

is illustrated first by developing the framework of one-dimensional

beams resting on elastic foundations, and then extending the same concept

to the framework of two-dimensional plane stress or plane strain elasto-

statics.

Computer programs are written both in BASIC and FORTRAN that numer-

ically implement the theoretical formulations for the one-dimensional

application. The program for the two-dimensional application is written

in FORTRAN. Accuracy of the indirect boundary element solution is

assessed through comparison with theoretical solutions and with solu-

tions from the alternative, direct boundary element method.

THEORETICAL BASIS OF THE INDIRECT BOUNDARY ELEMENT METHOD

The indirect boundary element method is a general numerical solu-

tion technique for solving boundary value problems in engineering science.

A bibliography is included in this report which shows the breadth of

engineering boundary value problems that can be approached with the

method.* The necessary theoretical relationships and equations for the 7.

method as applied to structural problems come from the theory of elasticity.

*Also see Reference 5 for a wide selection of applications.
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This theoretical basis is explicated herein, first with a one-dimensional

example of a beam resting on an elastic foundation, and second, with the

general problem of two-dimensional elastostatics.

Once the boundary value problem has been completely stated, the

numerical solution of that problem by the indirect boundary element

method follows three basic steps.

1. Establish the infinite-domain Green's functions appropriate to

the boundary value problem.

2. Form and solve the auxiliary boundary value problem in the

infinite domain by employing superposition of the established solutions.

3. Invoke the Kirchhoff uniqueness theorem to obtain the solution

to the original boundary value problem from the solution of the aux-

iliary problem.

Since these steps also contain information on the natural limitations of

the indirect boundary element method, they are discussed below.

A Green's function is a known solution to the governing differ-

ential equation of the given boundary value problem. It is very much

like an influence function, a concept familiar to undergraduate civil

engineers, which algebraically determines the response, say displacement

at some field point, due to a prescribed unit concentrated force at some

other point, called a source point. The important concept here is that

such a solution to the governing differential equation must be known at

the outset for the method to be applicable.* Step 1 implies that the

appropriate Green's functions must exist.

The key word in Step 2 is superposition. Thus, the boundary value

problem must be linear for the indirect boundary element method to be

applicable as a solution technique. It should be noted, however, that

despite this limitation, some nonlinear problems are solved with boundary

*It is also true that a Green's function satisfies boundary conditions
as well. See References 6 and 7 for good accounts of Green's functions.

4



element methods (Ref 5 and 8). These approaches must inevitably use a

sequence of linearizations. Nonetheless, the principal application of

the boundary element method at present is to linear problems. The

solution to the auxiliary problem is built up from the superposition of

unit solution components provided by the known Green's functions.

Finally, Step 3 implies that the solution to the actual problem can

be obtained only if Kirchhoff's uniqueness theorem can be invoked.

According to Reference 9, this theorem states:

If, in addition to the body forces, either the surface
forces or the surface displacements are given on the boundary
of an elastic body, there exists only one form of equilibrium
in the sense that the distribution of stresses and strains in
the body is determined uniquely.

The theorem requires that the structural problem be limited to infinites-

imal strains and displacements. Exactly why this theorem is invoked

will become clearer when applications of the indirect boundary element

method are presented in the next section.

Beam Resting on an Elastic Foundation

The necessary equations to be programmed into a computer for the

numerical solution of beams on elastic foundations by the indirect

boundary element are developed below. This development closely follows

the account given in Reference 10. The class of problems addressed is

shown in Figure 1. The boundary value problem is stated mathematically

as follows. Solve the fourth order differential equation

4
Ed A u = b(x) - k u(x)

dx4

where u = lateral deflection

b = prescribed lateral load

k = elastic foundation stiffness per unit length

E1 = beam bendt. -4 $itl y

Vi."- " . - - - - - . -
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The equation is to be solved subject to the following four boundary

conditions:

at x = O, M = 0 and s = 0
(2)

at x = L, e = 0 and s = 0

where m = bending moment

s = shear force

e = slope

The boundary condition at x = 0 implies a free end condition, and

at x = L a symmetry condition is implied. Other beam boundary conditions

can also be imposed.

Step I of the procedure requires the Green's functions to be given

for the above problem. These functions can be found in Reference 11 and

are applicable to an infinitely long beam and foundation as shown in

Figure 2. The appropriate beam response functions at a field point Q

for a unit concentrated force at point P are

O-r

u(r) = A e (cos pr + sin Or)

0(r) = _ e-r sin Or • sgn(y-x)
(3)

m(r) = ee
---=e4 cos Or - sin Or)

s(r) = e cos Or - sgn(y-x)

.I y> x
":where sgn~y-x) = -1 y < x

undefined y x

and = k/E

Similarly, the required Green's functions for the beam response at Q due

to a unit moment at P are

6
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2 = 2 2
u (r) .=(r- e-Or sin Or sgn(y-x)

4 3(r) = - k m(r) = e r--r--e "e r (Cos Or -sin Or)

(4)
e-or

mCr) = s(r) - cos Or - sgn(y-x)
2

s (r) = -u(r) = 0 (cos Or + sin Or)

In Step 2 the auxiliary problem is formed first by imbedding the

actual beam and foundation complete with loading into the infinite

domain as shown in Figure 3. It is apparent that the required boundary

conditions at points 1 and 2 are not imposed in the infinite beam unless

something else is done to enforce them. Therefore, the unknown forces

and unknown moments ' are applied to these two points to impose the

given boundary conditions. The auxiliary problem can now be stated as:

find the unknown forces and moments at points 1 and 2 such that the

prescribed boundary conditions of the actual problem are satisfied.

The distributed load b(x) can be resolved into N statically equiva-

lent concentrated forces acting on the beam, and, in general, there may

also be H concentrated moments acting on the actual beam. Using the

Green's functions and the principle of superposition, a set of linear

algebraic equations in the two unknown forces and the two unknown

moments ,* can be established such that the required boundary conditions
are satisfied upon their solution. Construction of this system of

equations proceeds as follows:

For s 0 at x = +E

= s(e,)I 1 + s (c,0)*1 + s(E,L) 2 + (,L)

NI H0* * 2 +*
N M

+ ' s(ex )b. + ' s (E,x)b = 0
..," " . -- .- "



For m 0O at x = ft

Is .(&O)s1 + m (8,0)4s, + *(&,L)I,2 +m &)*

+. m (C'x)b 1 + Em (C'x.)b. 0
9 1j=1 i

For s 2 0Oat x =L-9
A ) + s (L*eA *

= (Le SLLO4 1  *1 sUdC-&,J)* 2 +SsJCLJY2  *2

N- M
+ T' s(L-e,x.)b. + Ea (L-&,x.)b. = 09 i=1 1.=1

ForO O 0atx =L-6

o 2 (L-&,)*j+ (L-&,O)44I O(L.ejJ* 2 + *(Le)

+ E (L-Ecx 1 )b1 + F, 0 (L-e,x.i)b.j = 0
i=1 j=1 .

The term 9 represents an arbitrarily small distance to indicate that
these functions are evaluated just inside the actual or real beau domain.

In matrix form, these equations are written as

.(sO a(&,0) s(z,L) s (e,L) *

2 (c-,0) s (6-,0) 9(Le,L) s (c-,L) *

L;(L-,O) *(L-,O) (L-C,L) *(L-C,L) *

a:~z) (LC602 ... S(,N) 8 2~z1 *(Z6,2) . 8 (,N.) bi

s(-,)6(L-&,x)6LcL (L-e, Lex S LCN

O(-~ ) 2 (L-c~xu)j6*.1) (Lz 2)..b
LeL-,z1 OL-~ 2.. (L-&,zx1) 0*(L)~ (LCx2 *. 8*LX)j b 0

8b

~ * * * . .. . . . .- - * .b
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or

G + H = F (5a)

The solution to the auxiliary problem is then given by

= Q'(E-Ji ) (6)

It is interesting to note that the order of the coefficient matrix

G is only four, and that this will always be the case independently of

the beam and foundation length so long as the they are prescribed homo-

geneous. Thus, the solution will always require that matrices of only

order four be inverted. The one-dimensional boundary value problem has

been reduced to a discrete boundary element problem involving only two

points in the domain - the boundary points 1 and 2 of the actual beam

and foundation problem. This is in contrast to a standard finite element

solution approach that would have reduced the continuous problem to a

discrete problem at n points (nodes) in the domain along the beam.

For all practical purposes the greater part of the solution effort

in the indirect boundary element method is accomplished in Step 2.

Since the forces and moments at the end points are now known for the

auxiliary problem, and since they, by definition, impose the prescribed

boundary conditions in the infinite domain, Step 3 can be addressed.

Kirchhoff's uniqueness theorem simply specifies that the solution in the

domain [O,L] of the actual problem is the same as the solution for the

domain [O,LJ of the auxiliary problem. The solution of the actual

problem can then be obtained by superposition of the Green's functions

applied to the auxiliary problem as follows.

Suppose the beam response is desired at some set of K points within

the domain [O,L]. Then for k = 1,2,..., K the displacement, moment,

slope, and shear force can be written directly as

UNxk ) fi U(xO)I + U(XkL)*2 * O) + u (xkL)*2N .M
+ E UNxk,x i)b 1 + E u Nx x A

i=1 j=1

9



.2 -7-7l.I

(xk )  = m(XkO) 1 m+(XkL) 2 + M (XkV *L m Xk, L)*2
N

NA' N *

+ m(xkX i )b i + m (xkx 3 )b :
i=1 j=1

ONS(k)  = (XO)* + S(xkL)*2 + e (XkO)0 + s (xkL)*2

%"N -

+ O e(xkXi)b i + s (XXj)b.
i=l j=1

A 0 * * L)s(k) , sxk,)41 + s(xk, ) 2  ks0) 1 + s(xk2 *2

NAk,]  IIkX)  ,Xr * **(,. ) b.

+ S~x 'k ,x )b 1 + E S (x k x )bj
i=1 j=1

In matrix form these equations are

...) ((xk )L) ((xk )O) .k

O(- k, 0) -€k') M , * , *(,) *(* L b

ON) Oxk'0) O(xk, L) (xk") e(kL) *1

a~z(x,0) a(xkL) a(k 0  N kL) 2

u(z k' x1) U(xk x 2 ) ... UNx ,zN) U u(xk x 1) U (zk912) ... UI (xzkxM bi

Note that no further inrsion ofcx mtries x) neesay Thex~ abov

eutosar meel leb a eqain giin *h eie ouin

b2

9- 'A

Note that no further inversion of matrices is necessary. The above

equations are merely algebraic equations giving the desired solution to

the actual bean and foundation problem at a set of prescribed points.

10
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The rectangular matrix is the largest matrix to be formed and it is

order 4x(N+M), where N is the number of concentrated or statically

equivalent lateral forces prescribed on the beam, and H is the number of

concentrated moments prescribed along the length of the beam.

With the largest matrix to be inverted (see Step 2) an order four

matrix, and the largest matrix to be formed (but not necessarily stored)

a 4x(N+H) matrix, the indirect boundary method appears to be ideally

suited to microcomputers.

Two-Dimensional Elastostatics

The application of the indirect boundary element method presented

here is for the calculation of stresses and displacements in the plane

of two-dimensional elastic plates that are subject to stretching due to

prescribed edge forces and edge displacements. The form of this presen-

tation follows that given in Reference 12. Figure 4 illustrates the

general elastostatics problem under consideration. The normal stress

components are ax and y , and the shear stress component is xy, rela-

tive to the x-y coordinate system shown. The corresponding displacement

components are u and v. The mechanical properties of the plate are

defined by the modulus of elasticity, E, and Poisson's ratio, Ii.

The formal boundary value problem can be stated as the requirement

for a solution to the two-dimensional stress equilibrium partial dif-

ferential equations (ignoring body forces) in the domain 0:

x =

+ 0 in 0 (8)

* B y ex

And further, that the solution also satisfy the stress and displacement

boundary conditions

11
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a n and t  =Ft on rF

(9)

u = u and v = v on rD
AD

where Fn and Ft are prescribed tractions, in the normal and tangential

directions, respectively, along a section of the boundary rF' and a and
are the prescribed components of displacement in the x and y direc-

tions, respectively, along the remaining section of the boundary rD-
The indirect boundary element approach to the solution begins with

the establishment of the Green's functions appropriate to the governing

partial differential equation. In this case, these functions are solu-

tions for the three stress components and the two displacement compo-

nents at a field point Q due to a unit concentrated force at a source

point P in the plane of an infinite two-dimensional elastic region as

shown in Figure 5. The following functions can be found in Reference 12,

and pertain to plane strain conditions (i.e., the strain component

normal to the flat plate is zero, and the stress component normal to the

plate is, in general, nonzero). These functions are generally given in

terms of polar coordinates in standard references on the theory of

elasticity; see, for example, Reference 13. Nonetheless, the Green's

functions in the Cartesian xy system are

°x(QP) = CO [ 2 + 3G + 2. + G) x
= 2 n C+2G A + 2G (

".1

'a si - 2 + 3G 2(A Go (Q,e) sin ___ + .4 .

r I"

+s 8 [V G 2(A + G) Y(10a

y 2 n A + 2G A + 2G 2  2

I4 - rIr

+Cos 0 G 2(A +G) x (l0b)2 n ?+ 2G A +2G 2r

12
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Co(QP) = os G 2(h+ G)
y2n At2G A + 2G 2 r

sin 6 G 2(h +(G) x(
2n A+2G A + 2G 2(c

2o 6 h +3G ln r- At+O
u(QP) n - 2G(A t 2G) In 2G(A + 2G)

+sin O A + G (Ila)
2 n 2G(A + 2G) 21

sin [ A + 3G A + G 0)v(Q1p) = 2G(A + 2G) In r o2G(k + 2G)r2]

+Cos 0l A + G (11b)

where r = x + y2 (12a)

EK p(1b
A = (I + p)(1- 2 p) (12b)

E

G = E(12c)2(l + p)

Though these equations are for plane strain conditions, they can easily

be converted to apply to plane stress conditions with the substitution

everywhere of A' for A where

2AG
2A' = A 2G (13)

In that event the class of problems being considered would be such that

the stress component normal to the plane is zero, and the strain compo-

nent normal to the plane is nonzero.

Step 2 of the indirect boundary element procedure begins with the

formation of the auxiliary problem by scribing the actual problem boun-

dary on the infinite sheet of the same material and thickness. An

13
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unknown system of normal and tangential tractions, Pn and Pt, are applied

to the scribed boundary in the plane. These forces are shown in Figure 6.

The specific task is to solve the auxiliary problem for this unknown

system such that the given boundary conditions are satisfied in the

infinite sheet.

The Green's functions (Equations 10 and 11) and superposition are

employed to write equations relating the stresses and displacements at a

field point Q on the scribed boundary (but also in the infinite sheet)

in terms of the unknown forces at a source point P as P is successively

moved around the entire scribed boundary. That is, the influence of the

tractions at each source point P on the boundary is superimposed at the

field point Q in forming the equations for the total response at field

point Q. Since the unknown force system is continuous, the superposition

is accomplished by an integral on the boundary, and a boundary integral

equation corresponding to the field point Q results.

Since the integration is around the entire boundary 1, there will

occur a singularity condition when the source point P and the field

point Q coincide. To provide for this instance, the boundary integral

is divided into two integrals, one along a small segment Af that contains

the field point Q, and the other along the remaining portion of the

boundary A - At. The contribution of the former integral is evaluated

in the limit as the distance r between P and Q vanishes. Determining

the singularity value of the integrals is a lengthy mathematical exercise

that is omitted here. However, this singularity contribution is important

as it will form block diagonal entries (or submatrices) in the coefficient

matrix of the system of algebriac equations that will result from the

numerical implementation.

The boundary integral equations thusly formed for an arbitrary

boundary point Q are given below in Equations 14 and 15, where the first

terms on the right-hand side in brackets are contributed by the

singularity condition.

1

!1



Q2)a + 2G) Pn - sin a co 8 Pt*p

I r ) ]

+ / (Ps cos 0 + Pt sinO) 1 [ 1  - c2  r4 Q d (14a)

(ay)Q X + 2G C0'2 
o  :

Q [L2± + 2G) Pn + sin 0 coso P ]

+ (ncoo 0 + P sin 0) "Co l '-r P + 2 (x " Xp)2(Y, YP)

4- r4 d

X - Xp(xQ _ x )(y Q  -yp)2

+ sPn in e + Pt c s 8), 1 24 P(1 b

lc r 1

( xyG = - sin 0 coo 8 Pn -"1 (Sin2  0 _ co 2  ) P

4P

I('Pn tin O + Pt cos 0). + c2 (x _ p24 p di

I-A r4

u ~ [ (' - (XQ - Ip)(YQ - yp)2
Q. I -LI c (

+ = (Pn sin 8 + Pt Cos 0) - c3 In r - c4  rQ2 d

I-Alt

+ (P Cos 0 + Pt sin O) 4 ( r )2 ?()(iQ dl (15a)

.5I-At 
nt I[4r

.4.. ( )Q = c~in.at 1 I 4 h u n ~ c ( n ~ ~ 1 A c a P
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-4'-
(v) [ C( 1- ,Cy] a) c e sin P

('Pn sn + Pt sin 8). - in r - c 25 di

i-At

(~nsin 0 + Pt (ox x~lc ....iYP di(1b

where c = 1 +2(A + G)

G
cI 2n(A +. 2G)

At+G
C2  = n(A + 2G)

A + 3G
c3  = 4nG(A + 2G)

C A=
4 4nG(A + 2G)

At an arbitrary point Q on the boundary, the prescribed boundary

condition either for stress or for displacement is imposed. The unknown

force distributions P and P appearing on the right-hand sides of

Equations 14 or 15 will correspond to these conditions. The equilibrium

of a material point Q on rF is considered with the aid of Figure 7.

Equating the horizontal and vertical forces to zero on the stress block

shown yields the two following equations:

()Q Ay - (TXY)Q Ax + Ft cos 0 As - Fn sin e As = 0

A+A

-(Oy)Q Ax + (TXY)Q Ay + Ft sin e As F n cos 6 As = 0

All variables refer to the point Q. These equations can easily be

simplified to the following form:

16
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22A(a)Q sin2 0 + (o)Q cos 2(1)Qcose sin = FxQFn

(16)

[(Oy)Q - (OX)Q cos 0 sin 0 - (IXY)Q (sin2 e - cos2 e) : Ft

Though Equations 16 appear to contain three unknowns, (Cx)QV (ay)Q,

and (z XY)Q9 there are only two actual unknowns, since by substituting

Equations 14 for these variables, the left-hand sides then contain only

Pn and Pt as unknowns. In this way two equations in two unknowns are

written for each point Q on the boundary rF-

Likewise at each point Q on rD, two equations in the unknowns Pn

and Pt are obtained since

A

uQ u

(17)
' VQ = V

-. Q

and substitution of Equations 15 for UQ and VQ leaves the left-hand

sides expressed in terms of Pn and Pt"

The numerical implementation of the boundary integral equations

proceeds as follows. The entire boundary is subdivided into N straight

line segments at the center of which the pair of equations in either

Equations 16 or 17 is applied. The result is a system of 2N boundary

integral equations containing the unknown tractions Pn and Pt acting

over each segment. P and P are interpolated at the same N points, and
n t

2N equations in 2N unknown discrete values of Pn and Pt are obtained.

Interpolation of the unknown traction distribution at the N center
points is consistent with assuming the tractions to be constant over the

segment. Other numerical schemes can be constructed also. For example,

the unknown tractions can be interpolated assuming a linear or parabolic

distribution over the segment. In this study the constant interpolation

scheme was implemented, although the equations were also developed for

linear interpolation.

Once the interpolation scheme has been applied, the discrete variables

P. and Pt can be factored outside the integrands. The remaining integral

expressions, when evaluated over each segment, form the coefficients of

17
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these discrete variables in the system of algebraic equations. The

integrations were carried out analytically in this study, as was the

evaluation of the singularity contribution given in Equations 14 and 15.

The integrals could have been evaluated numerically instead. However,

such an approach essentially would have resulted in a numerical integra-

tion over each segment occurring within a straight line approximation of

the boundary (i.e., an approximation within an approximation). Again,

the details of the analytical integration are omitted. The system of 2N

linear algebraic equations which results is

= B (18)

The square coefficient matrix K contains the results of the

analytical integration of the singularities in 2x2 blocks on the diag-

onal and the analytical integrations of the terms other than the sin-

gularities in the off-diagonal blocks. The vector P contains unknown
variables P and P at each of the N points. The vector B contains the

prescribed boundary values of either the tractions (Fn and F t) or the

displacements (u^ and ) at each of the N points. Some details of the

numerical implementation and these matrices may be found in Appendix A.

The solution of this system yields 2N values for the unknown trac-

tions on the scribed boundary such that the prescribed boundary condi-

tions are imposed in the infinite sheet. The solution is written as

-1 ^

= K B (19)

In this study the solution was carried out by a Gaussian elimination

algorithm with partial pivoting. It should be mentioned that for homoge-

neous problems the coefficient matrix K is both full and nonsymmetric.

It has no special structure that could-otherwise have been exploited as

in finite element solutions of the same class of problems. The solution,

Equation 19, concludes Step 2 of the indirect boundary element procedure.

18



Step 3 is described as follows. The prescribed displacement and

stress conditions of the actual problem have been imposed on the scribed

boundary in the infinite sheet of the auxiliary problem. The Kirchoff

uniqueness theorem is invoked, which specifies that the solution to the

actual problem is therefore identical to the solution of the auxiliary

problem. As a result, the stresses and displacements on and within the

scribed boundary of the infinite sheet are identical to the stresses and

displacements on and within the finite elastic sheet of the actual

problem.

Given the 2N values for Pn and Pt, the stress or displacement

response at any prescribed field point Q within the scribed boundary can

be found using the appropriate Green's functions, Equations 10 or 11.

Referring to Figure 8, the stress and displacement responses at a pre-

scribed field point Q are given by the following equations. The stresses

at Q are

()N (Pni sin6 + Pti d 2 + 3G 2(A + G)

(P s G [ 2 X + 2G (2)

i~l ri= 2 Co+2Gs +2G + si\rn 0 i

,3 ,IxyQ t. i G 2(k +G)

=2 n + 2G + 2G

i~l i

N (P . cos 0. + P . sin e.) 2

-n I. t i 2G+ 2 QX + G)x 20

((Y yQ 2 n 1 2 G A +2G 21

+1 2 n + 2G A + 2G /)J r2)i
A A

N (-P nsain 0 + P tCos0d G ( +G / 2\

+ Q nE 1 ti ___ _ _ _ _ _ I l i ! ~ 2

i=1 2G \ iJ 2 Ji

N ( sine 8. G 2(X c 0. 2\

n -. l [ +. x G IYx
2 n + G A+2G 2/i

$1
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The displacements at Q are

N (-P.sin . + P cos + 2

tvi = i i A + 3G A + G

i2l 2 ) 2G(A + 2G) i 2G(Ar.2G)(2)

N (P .Cos 0. + P sin
fi 2 6)( [ + 2G) (21a)

i= +
N (P 1 sin. -+' Con8.
+ ni i ti 1 A___ + IG 21b[n2GA +2G)TI(2b

COMPUTATIONAL PERFORMANCE OF THE INDIRECT BOUNDARY ELEMENT METHOD

Beam Resting on an Elastic Foundation

A numerical study was conducted by comparing computed results from

two indirect BEN programs with theoretical solutions for beam-on-an-

elastic-foundation problems. The first program was written in FORTRAN

and implemented on a Cyber 175 mainframe computer. The second program,

developed independent of the first, was written in Applesoft BASIC on an

Apple II Plus microcomputer. Other boundary element computer programs

have been written for microcomputers (Ref 14 and 15), but the authors

are unaware of any based upon the indirect method for stress analysis.

There are some differences in these two programs. The FORTRAN ver-

sion contains closed-form solutions for full-span uniform and bilinear

varying loading, requires batch input, and assumes free-end boundary 1

conditions. The BASIC version approximates both uniform and linear 4
varying loads (partial or full span) with equally spaced concentrated

loads. The input is interactive, and each set of boundary conditions

can be specified in terms of displacement, rotation, moment, or shear.

The larger real word size of the Cyber 175 computer (60 bits versus

40.bits for the Apple) and the closed-form solution for linear varying

20
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loads contribute to the better accuracy of FORTRAN versions. The BASIC

version has more flexibility with interactive input, more general loading,

and the ability to model more complex boundary conditions.

The problems shown in Figures 9 through 14 are the subjects of the

numerical study for one-dimensional applications. These problems include

concentrated loads, a partial uniform load, and exploit symmetry condi-

tions. Appendix B includes additional problems for the BASIC version,

showing linear varying loads and asymmetry modeling. The listing of the

BASIC program is included in Appendix C.

As shown in Figure 9, the first problem consist of a 50-kip load on

the center of a beam. The moment and deflection at the center of the

beam are compared with theory. The results show both programs agreeing

exactly (to the indicated accuracy) with theory for deflection at the

midspan. Both programs give accurate results for the moment value, the

FORTRAN version being the most accurate. Figure 10 demonstrates the use

of symmetry in the solution of the same problem.

The mainframe version of the program executed 100 times faster than

the microcomputer version. Using a compiled version of the BASIC program

nearly doubled its speed. Though the programs were constructed indepen-

dently, this does give a rough estimate of the speed difference between

the mainframe and this generation of microcomputer.

Figure 11 illustrates the second example involving two symmetric

concentrated loads. The moment and deflection at the center of the beam

are compared with theory. Figure 12 shows the model of the problem

incorporating symmetry boundary conditions. Both programs give equally

good results. The symmetric modeling gives the same values as the full

beam model.

Figures 13 and 14 illustrate the third example involving a partial
uniform load symmetric about the centerline. The moment and deflection

at the center of the beam and the slope at the ends of the beam are

compared with theory. The BASIC program gives better results for the

end slopes, while the FORTRAN program gives better results for the

centerline moment. The accuracy of the bending moment calculation from

the BASIC version using symmetry is equal to that from the FORTRAN

21

4.i! . 4 -- . . . . . . . . -. . . . . . . . . . . . . .

,.. c... .. * ~*. . .. . .. 4 *. . . . . . . . . . .



ru .. rr .-.. *.. ... .- . . -. . .

version. The full model uses 20 concentrated loads to approximate the

partial uniform load. The symmetry model uses both 10 and 20 concen-

trated loads to approximate the partial uniform load. All models indi-

cate about the same accuracy, indicating that 10 concentrated loads are

adequate to represent the partial uniform load in the symmetry model.

The interactive mode, allowable with the BASIC version, makes the micro-

computer version more valuable as an engineering tool.

Other examples presented in Appendix C include a partial span,

linear varying load, and antisymmetric loading. The inversion test (see

Appendix B for an explanation) indicated that the solution might have

been inaccurate. A possible problem with the boundary integral method

is that the principal coefficient matrix ([G] in this case) contains

terms that can vary by orders of magnitude. The printout of the [G]

matrix indicates zero terms (to three decimal places) for the displacement

and rotation rows. The matrix might require preconditioning to ensure

consistently good numerical accuracy.

Of the 11 problems studied, all but one indicate the BEN to be very

accurate for the beam-on-an-elastic-foundation problems. The only

approximations made in the algorithms were the reduction of continuous

loads to a series of concentrated loads in the BASIC program.

Two-Dimensional Elastostatics

A brief numerical study was conducted on three simple example prob-

lems in which the solutions from an indirect BEN program, a direct BEN

program, and theory were compared. Both programs incorporated constant

boundary elements. The indirect BEN program (BIN2D) was developed as

part of this study, while the direct BEN program (PGNI8) was developed

by C. A. Brebbia at Southampton and is described in Reference 16.

Appendix D contains a listing of the BIN2D program.

In the boundary element method, most of the computer time is spent

integrating the boundary integrals over the elements to form the system

matrix K and calculating internal responses depending on how much inter-

nal information is sought. In the finite element method the solution of

the system of algebraic equations is usually the longest calculation.
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In addition to accuracy considerations, BIM2D was developed using ana-

lytical integrations over the elements to minimize the cost of boundary

integrations. This offered better accuracy for a given cost. Integra-

tions within the direct BEM program are carried out numerically except

for the singularity coefficients - diagonal blocks of the system matrix.

Several observations drawn from the numerical study are discussed below.

The ripple effect (as shown in Figures 15 and 16) occurs near a

boundary where a relatively few number of elements are used. The greatest

deviations occurred near abrupt geometry discontinuities (corners) and

loading discontinuities.

The first problem studied was a 1-inch-thick square plate in hydro-

static tension. As shown in Figure 17 the model consisted of 12 ele-

ments of unit length on a side, all with a prescribed normal traction of

1,000 psi. Internal stresses were calculated in the upper quarter of

the plate. The stresses at four lines of 30 response points each are

shown plotted in Figure 15.

Except for the edge region, within one element length of the bound-

ary, the direct method algorithm is more accurate. Excluding the edge

region, the indirect algorithm's error, 5.6% and less, is on the order

of 10 times that of the direct algorithm's error. In the edge region

the indirect algorithm is more accurate, and this is the critical region

in most applications. The direct method behaves pathologically near the

boundary, while the indirect algorithm is relatively stable. Both

methods exhibit a ripple effect or artificial stress oscillation, but it

is much more pronounced in the direct algorithm. It is interesting that

the normal stress computed from the direct method changes direction of

instability near the corner. That is, a goes one way and ax goes the

other.

The indirect method always underestimates the response where the

stresses are largest. For most response lines examined the response

begins with a nearly constant accuracy, decreases in accuracy, and then

recovers near the boundary. The presence of the boundary influences a

larger region in the indirect algorithm, but this effect is less severe.
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The second problem studied was a 1-inch-thick rectangular plate

subjected to 1,000 psi hydrostatic tension. As shown in Figure 18, the

model consisted of two 20-element sides and two 4-element sides. Each

element had a length of unity. The internal responses were calculated

in the upper quarter of the plate. The stresses along four lines of

50 response points each were calculated and are shown plotted in Figure 16.

This problem was also the subject of a numerical study conducted by John

Bode (Ref 12).

In this example the computed stress response was sampled within

one-tenth of an element length of the plate edge. The resulting ripple

effect is much more pronounced than it was in the square plate results.

The indirect method exhibits a ripple effect of about ±1.0%. This is

overshadowed by the strong divergence from the solution exhibited by the

direct method algorithm. As with the first example the direct method is

more accurate excluding the edge region. However, a high boundary/domain

ratio problem (in two and three dimensions) requires an algorithm that

is more accurate in the edge region, since this region comprises a

greater portion of the domain. The indirect method continues to exhibit

a loss and then recovery in accuracy near the boundary except in the

corner region.

The corner region is the area of strongest divergence for both

methods. Since the term "constant element" alludes to the artificial

boundary loads, the BEM will not give an exact solution for a uniform

stress field (unlike the finite element method with a constant strain

element, for example). In the first two problems considered the pre-

scribed boundary conditions were constant (hydrostatic tension). The

indirect BEN solves the problem in the infinite domain, and the gradient

of the artificial boundary stresses is noted to be high near the cor-

ners. It is believed that the artificial boundary stresses tended to

increase near the corners to maintain the square shape of the plate.

A concentration of elements near the corners yields a more accurate

solution by better modeling of the artificial tractions. However, for a

model with a fixed number of elements, overconcentration near the corners

increases the ripple effect near the large elements. One method for
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refining a boundary mesh might be based on maintaining a constant value

for the total artificial traction per element. Bode's study showed that

beveling the corners was not effective with constant elements.

In Bode's study, 96 well-placed elements gave average values almost

as good as 288 equally spaced elements. The ripple effect, however, was

more prominent. Central processing unit (CPU) time is the major factor

in the number of elements. The following table shows the relationship

between the number of elements and CPUs in Bode's study. The third

problem in our study, a stress concentration problem, did not show cost

as strongly dependent on the number of elements (see Figure 19).

Number of Elements Normalized CPUs

96 1.0
192 3.5
288 8.65

Forty-eight elements of unit length were used in both the square

and rectangular plate problems. At the response lines half an element

length away from the edge, the results from the square plate problem

were more accurate. At the center of the plate, stress errors of 2% to

3% were observed for the square plate and 5% to 7% were observed for the

rectangular plate. Thus, the proximity of edges has an adverse effect

on stress response accuracy.

The higher inaccuracies in the rectangular plate problem are prob-

ably due to each response point being relatively closer to more edges

and a greater number of elements. In this example the BEN slightly

decreased in accuracy as the narrowness of the domain increased. For a

given accuracy the difference in analysis cost for the two plate problems

would not vary much with the BEN. However, the cost would be expected

to vary if the finite element method (FEN) were to be used.

The third problem studied was a 1-inch-thick square plate with a

circular cut out that involves high stress gradients or stress concen-

trations. Uniform compression stress of 1 psi was applied to two opposite

? .edges. Various numbers of elements were used to model the external and

internal boundaries, but in all cases the elements for a given boundary
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were of uniform size. The various models are indicated in Figure 19. A

vertical and a horizontal line, of 37 response points each, extended

from the hole to the outer boundary. Figure 20 shows the stress response

for the different models. The theoretical solution shown assumes the

elastic plate to be of infinite extent.

Since the response lines did not closely parallel an edge, no

ripple effect was observed. As with the other two problems the direct

algorithm diverges strongly at about half an element length from the

boundary. Because of the strong divergence, the direct algorithm was

only used for comparison with the coarse model, model 1. For the indirect

algorithm the responses are relatively accurate, diverging slightly in

the edge regions. The models with the finer element subdivision on a

given boundary tend to give the most accurate results near that boundary.

The level of subdivision on distant boundaries has only a secondary

effect. Figure 20b illustrates the variation of o along the verticalx
response line. For this response the localized effect of the boundaries

is evident. Near the circular edge where the stress gradient is highest,

models 3 and 4 show the best results and contain approximately 4% error.

Models I and 2 have an error of between 5% and 6%. The number of elements

used on the square has only a secondary effect.

Models 2 and 4 show the best results along the square edge and

contain approximately 8% error. Models 1 and 3 have an error of approx-

imately 13%. Again, the number of elements used to model the distant

boundary, in this case the circular edge, has only a secondary effect.

Figure 20c illustrates the variation of (I along the vertical
y

response line. In theory ay should be zero at both boundaries. As

mentioned earlier the theoretical curve corresponds to an infinite

plate, and this is the main source of discrepancy. For models 1 and 3

(both having a 28-element square boundary) a slight decrease in accuracy

with a recovery near the square boundary is exhibited again.

Figure 20d illustrates the variation of ax along the horizontal

response line. In theory this stress should be 0 at the circle and

-1 psi (the applied traction) at the outer boundary. The theoretical

solution is approaching -1 psi slower than the BEM solution.
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Figure 20e illustrates the variation of a along the horizontal
y

response line. The accuracy trends previously mentioned are slightly

deviated from near the circle because in this example model 2 gives

slightly better results than model 3 while having fewer elements on the

circular boundary. The maximum error for a on the circular boundary
y

was 20% for this response line. But it must be noted that a is of les-Y
ser importance in the stress concentration example.

In general, the constant-element BEM exhibited a good ability to

model stress gradients. Unlike the uniform stress field problems, the

stress gradient problem showed the BEN to overestimate stress values

(i.e., to be conservative). The boundary effects are observed to be

local and relative to the element size. Distant boundaries are seen to

have only a secondary effect.

SUMMARY AND CONCLUSIONS

The indirect boundary element method has been investigated for

application to one- and two-dimensional elastostatics problems in struc-

tural analysis. The theoretical basis of the method has been described

by beginning with the simple problem of a beam resting on an elastic

foundation and then extending the theory to a more useful class of

problems pertaining to the plane stress and plane strain analysis in

elastostatics.

The numerical implementation of the theoretical formulation was

illustrated with the development of computer programs for both small and

large computers. Stress analysis capability using these computer pro-

grams was assessed by comparison of results to theoretical solutions and

to results from another computer program that is based on the alterna-

tive direct boundary element formulation.

Three basic concepts constitute the theoretical formulation of the

indirect boundary element method: Green's functions, superposition, and

the Kirchhoff uniqueness theorem.
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Green's functions are akin to the more familiar influence functions,

and they give the stress and displacement response at an arbitrary field

point due to a unit force at an arbitrary source point in the domain.

These functions are classical results from the theory of elasticity, and

those which were used herein apply to infinite domains only. They sug-

gest the reformulation of actual problems in the finite domain in terms

of problems in the infinite domain. This gives rise to the auxiliary

problem, which is solved in place of the actual problem, and thus the

origin of the word "indirect" in the indirect boundary element method.

Through superposition of the Green's functions, a set of boundary

integral equations is constructed whose solution imposes the prescribed

boundary conditions on a contour in the infinite domain that is identi-

cal to the boundary contour of the actual finite problem.

Kirchhoff's uniqueness theorem then requires that the solution of

the auxiliary problem be identical to the solution of the actual problem.

The solution of the auxiliary problem is accomplished numerically. The

boundary is discretized into N straight line segments over which unknown

artificial normal and tangential stress tractions are interpolated. In

this study a constant value for the unknowns was assumed over each

segment. The integration of the boundary integrals over a segment was

carried out analytically, and the results are the coefficients of the 2N

unknown tractions. A linear system of 2N algebraic equations in the 2N

unknowns occurs and is solved by Gaussian elimination. The coefficient

matrix has little exploitable structure for the homogeneous examples

considered. It is both fully populated and nonsymmetric. On.ce the

artificial tractions along the boundary are known, the stress and d.'s-

placement response may be determined by superposition.

The results from the rather simple two-dimensional numerical exper-

iments carried out in this study suggest that the boundary element

methods are susceptible to accuracy deterioration within one element

length of the boundary or edge of the domain. However, within the

domain the accuracy is very satisfactory, usually always within 5% of

exact solutions.
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Very near the edges, however, a ripple effect occurs in the computed

stress values. The ripple effect is an oscillation in the stress magni-

tude about the exact value. The oscillation along a line paralleling an

edge increases as a corner of the domain is approached. That is, as

another edge is approached, the ripple effect becomes worse.

Since the critical region of the ripple effect is within one element

length of an edge, element size is a factor in achieving accuracy.

Local element size gradation can be employed to achieve improved accuracy

near an edge, while distant element size has little influence on the

accuracy in the vicinity of this edge.

Inasmuch as significant stresses often occur on boundaries, fine

subdivisions of those boundaries may be necessary to achieve desired

accuracy.

With regard to edge effects, the indirect boundary element method

faired better than the particular direct boundary element implementation

that was available for comparison.

The results pertaining to the accuracy of the indirect boundary

element method to correctly capture stress gradients were very encourag-

ing, even for the constant stress elements employed. The results suggest

that the method may be a very economical analysis tool for determining

stress concentration factors in elastostatics.

Compared to finite element methods, the necessary input data require-

ments are less, and smaller matrices result. The boundary element

methods are therefore more suited to small computers. This would then

allow the personal interactive advantages of microcomputers to further

enhance the boundary element methods as effective stress analysis tools.

RECOMIENDATION

From the results of this study, it is believed that a combined

finite element and boundary element computer program may prove successful

in contributing to the reduction in the high costs now associated with

nonlinear finite element programs. A two-dimensional program could be
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developed and used to evaluate potential advantages in the solution of

nonlinear problems, particularly soil-structure interaction problems

where, for example, a buried structure along with some surrounding soil

may be behaving nonlinearly and the remaining half-space soil is behaving

linearly. However, the proper theoretical and numerical treatment of

the interface equations must be thoroughly evaluated and then implemented.

This step is a necessary prerequisite to an effective implementation.

The recommendation is to undertake the theoretical and numerical treatment

of coupling the finite element and indirect boundary element methods.
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80 in.

-40 in.-*

E= i1x iO6  -P= 50,000 lb

I 26.2 in.

K 1,000 lb/in.

Results at Centerline

Boundary Element

Theory Micro-BASIC Mainframe-
FORTRAN

Deflection (in.) 0.861 0.861 0.861

Moment (ina-Ib) 417,135 416,898 417,130

Execution time (sec) 38-interpreted 0.35
21-compiled

Figure 9. Full model of a concentrated load on centerline.

E lOx 106 psi - jPs 25,000 lb

boundary conditions

rotation o

K - 1,000 lb/in.

Results at Center Line

Boundary Element
Theory Micro-BASIC

Deflection (in.) 0.861 0.861

Moment (in.-Ib) 417,135 416,948

Figure 10. Symmetric model of a concentrated load on centerline.
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E=- IOXlO6 psi 020 in.. 20 / iro

I - 26.2 in.4  50,00 lb Iso, 000-ib

K - 1,000 lb/in.

Remits at Ends of Beam

Boundary Element

Theory Micro- BASIC Mainframe-

FORTRAN

Deflection (in.) 1.104 1.103 1.103

Momnent (in.-Ib) 0 0 0

Figure 11. Full model of symmetric concentrated load.

I = 26.2bondary conditions

rotation - 0

shear ,,0

K -1,000 Wbin.

Results at End of Beam

Boundary Element
Theory Micro-BASIC

Deflection (in0 1.104 1.103

Moment (in-Ib) 0 0

Figure 12. Symmetric model of symmetric concentrated loads.
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20 concentrated load
approximation

80 in.

E 10x106 psi -20 in.- 1 0 bb/in. 20 in.
= .26.2 in. 4  

\ I

K - 1,000 lb/in.

Results

Boundary Element

Theory Micro-BASIC Mainframe-
FORTRAN

Deflection at center (in.) 6.25x10 3  6.26x1( 3  6.26x10 3

Moment at center (in.lb) 1535 1531 1532

Slope at ends (rad) 1.1539x10 4  1.1539xlO 4  1.1533xIO 4

Figure 13. Full model of partial uniform load.

- 40 in ---

E . *uniform load approximated by 10 and

I - 26.2 i -20in. 1 10 l . 20 concentrated loads

-- ,- boundary conditions

rotation - 0
shear - 0

K= 1,000 lb/in.

Results

Boundary Element
Theory Micro-BASIC (10)0 (20)0

Deflection at center (n.) 6.2$x10 "3  6.26xi0"3  6.26x10"3

Moment at center (in.4b) 1535 1532 1532

lope at left end (rad) 1.1S39x10 4  1.1S41xlO4  1.1534xO "4

Figure 14. Symmetric model of partial uniform load.
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Figure 17. Square plate model.
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37 response points

i.1 psi1 psi

--4

16.5 in.

Model Number of Elements Normalized Computer
Number Square Circle Total Cost

1 28 24 52 1
2 56 24 80 1.6
3 28 48 76 1.4
4 56 48 104 2.4

Figure 19. Square plate stress concentration models.
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Appendix A

ASPECTS OF THE NUMERICAL IMPLEMENTATION

This appendix includes further detail on the numerical implementa-

tion of the indirect boundary element method (BEM). Each section explains

one aspect that was omitted for clarity in the text of the report on

two-dimensional elastostatics. Though some of the detail is unique to

the BIH2D program, the overall methodology is general in nature.

SIMPLIFIED BOUNDARY INTEGRAL EQUATIONS

Equation 14a is rewritten as follows. The contribution of the

singular element is written as a product of influence coefficients and

discrete artificial tractions. The integration along the remainder of

the boundary is written as the summation of the integrations along the

nonsingular elements. In the present study, these integrations were

carried out analytically, but these details are omitted and only the

results are given. Using the following substitutions,

= X + 2G sin2 0 (A-Ia)
QQ 2(A + 2G)

SXT = -sin e cos e (A-1b)

"},VQ,Q CA-ib

YI L- Q---- 'C _ p dt (A-2a)
-o cf 0 r 1 C2  4p(y

A-i



(xQ x 2p(YQ Yp)]
y2Q, f c2  Q 4 - j d (A-2b)

Equation 14a can be rewritten in the following form:

(OX)Q = SXNQ,Q n XQ,Q PtQ

+ P sin 0 + Cos ) y1QY p

+ (Pnp cos e +/Pt sin 0) y2Q, (A-3)

PP

Combining terms with respect to the boundary tractions gives

(oX) Q  = SXNQQ PnQ + SXTQQ PtQ

+ 0 + cos 02
L[P np 1 2Q,p

+ p (cos 1Q + sin O y2 (A-4)

The integration along the remainder of boundary can now be written in

coefficient form. The nonsingular influence coefficients are given by:

SXNQp = - sin 0 ylQ'p + cos y2QIP (A-5a)

SXTQp = Cos YQ,p + sin y2Q,p (A-5b)

Thus, Equation A-4 is further simplified to:

N N
(a )Q P- SXINQp + PtST~ (A-6a)

where the singular coefficients, subscripted Q,Q, are given by Equa-

tions A-i, and the nonsingular coefficients, subscripted Q,P, are given

by Equations A-S.

A-2

i
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In a similar manner (ay)Q9 (Ixy)Q9 (U)Q, and (V)Q can be rewritten

as:

N N
=C ) QP SYN np Q + SYT Q (A-6b)P_-I P_-I Pp

N N
(T )Q= , P T + F, TT (A-6c)

y p_, np P-

N N
(U)Q = P UN + P UT (A-6d)

Q p- p P-1 P

N N
(V)Q = , P VN + , Ptp VT (A-6e)

The coefficients SYNQP and SYT Q P are defined in a manner similar to

that shown in Equations A-1 and A-5 using Equations 14b; the coeffi-

cients TN and TT use Equation 14, the coefficients UN and UT use Equa-

tion 15a, and the coefficients VN and VT use Equation 15b.

PRESCRIBED BOUNDARY TRACTIONS IN TERMS OF THE ARTIFICIAL BOUNDARY

TRACTIONS

Equation 16 gives the prescribed boundary tractions in terms of the

unknown stresses (rx )Q9 (ry)Q9 and (Txy)Q. Writing the unknown stresses

in terms of the artificial boundary tractions, using Equations A-6a, b,

and c, gives:

E Pnpl sin e(SXNQ,p) + Cos 6(SYNQ,p) - 2 sin 0 cos 0 (TNQp)]

Ptp(sin2 *(SXTQ,p) + cos 2 e(SYTQp'I - 2 sin 6 cos e (TNQp)] - FNQ (A-7a)

N)Pnp'co e sinS (SYNQp) + cos S sin 0 (SYNQ,p) + (c°'2  - sin 2 0)(TNQp)]

Ptp[-cot e sin e (SXTQ,p) + co6 e sin e (SYTQ,p) + (cos 2 e - sin 2 e)(TTQ,P) I  t Q (A-7b)

A-3
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The quantities within the square brackets are the coefficients of the

matrix K. Thus, Equations A-7 can be rewritten as:

N

EP=I Ki + P Ki j1 FnQ(-a

PnP Ki+,j Ptp Ki+ ,j+l = t (A-8b)

where i = 2xQ -1
j =2xP- 1

In this form it is apparent that the influence of the artificial boundary

tractions at each element P with the prescribed boundary tractions at

element Q results in a block of four terms (a 2x2 submatrix) in the

coefficient matrix.

PRESCRIBED BOUNDARY DISPLACEMENTS IN TERMS OF THE ARTIFICIAL BOUNDARY

TRACTIONS

Equation 17 gives the prescribed boundary displacements (G, V) in

terms of the unknown boundary displacements (uQ, vQ). Writing these

displacements in terms of the artificial boundary tractions, using

Equations A-6d and e, gives:

P N +p QI - UQnp1 1 1~p -t[Qp =AU (A-9a)

%N*
%: )Pnp[VNQP + I ] t 1 QP) = (A-9b)P-1 PP V Q P

The quantities within the square brackets are the coefficients of the

matrix K. Thus, Equations A-9 can be rewritten in the same form as

Equations A-8:

A-4



N K1i'j 1  - uQ (A-iOa)

N1I . -P K.~ + (A- lob)E Pnp Kij V

where i = 2xQ -1
j = 2xP- 1

Again, the interaction of an ordered pair of elements results in a block

of four terms in the coefficient matrix.

SYSTEM OF EQUATIONS

Equations A-8 and Equations A-1O each yield a set of two equations

in 2N unknowns. Either set of equations can be written in matrix notation

as:

[K. i,. i,3 i,4 i,2N-l i,2N1

K., i, K K K. K. K 1 t B
Ki+,l i+, 2  Ki+, 3  Ki+1, 4  Ki+I,2N-I Ki+I,2N t = i+

PPn2

PPt2

P

3 
PtN

... (A-li)

where i = 2xQ- I

B. = prescribed x displacement or normal traction at
element Q

Bi = prescribed y displacement or tangential traction
at element Q

A-5



For each straight-line element around the model boundary, either
the boundary displacements or tractions are prescribed. Thus, each

element produces two equations. The total system of equations (Equation 18)
is formed by combining N pairs of equations, such as Equations A-10.
Thus, 2N unknown artificial boundary tractions are expressed in terms of

211 prescribed boundary tractions or displacements.

A-
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Appendix B

BIHID DOCUNENATION AND LISTING,
BASIC VERSION

PURPOSE

This appendix illustrates how the nature of the boundary integral
method lends itself to the solution of structural analysis problems on a
microcomputer.

SCOPE

The BINID program solves the problem of a beam on an elastic founda-
tion. The loading is limited to concentrated loads; however, it is set
up to generate loads to approximate linear varying continuous loads.
The boundary condition at each end of the finite beam can be specified
by entering the value of two of the following quantities:

" shear
" moment
" displacement
" rotation

This allows modeling half of the beam for symmetrical and asymmetrical
loading cases (see Appendix C).

MTHODOLOGY

The theory for the program is explained in detail in the body of
the report. The following discussion briefly explains the major sub-
routines.

Input Routine (Beginning Statement Number 1050)

The input routine is interactive only to the extent that it prompts
the user for input. It does not check the range of the user's input
(with the exception of allowing a maximum of 20 uses of defined concen-
trated loads) and does not allow editing of input.

Generator Routine (Beginning Statement Number 920)

The generator routine generates concentrated loads to approximate
the continuous loads. These loads are added to the concentrated load
arrays (both positions and values).

i B-i



Matrices Development Routine (Beginning Statement Number 600)

The matrices development routine initially adjusts the position of
all concentrated loads such that no load is within a given distance,
epsilon, from either boundary. The routine then develops both the [G)
and [Hp] matrices.

Matrix Inversion Routine (Beginning Statement Number 750)

The matrix inversion routine inverts the 4x4 [G] matrix and per-
forms an accuracy test. In the accuracy test the flexibility matrix [G]
is multiplied by its inverse to give the identity matrix. The sum of
all terms in the identity matrix is printed on the screen and should
approach 4 (the order of the matrix). If [G] is a singular matrix the
program ends.

Solve Routine (Beginning Statement Number 730)

The solve routine solves for the boundary forces and moments such
that when they are applied to the infinite beam, the points within the
boundaries respond as if they were on the finite beam.

Response Input Routine (Beginning Statement Number 1800)

The response input routine, as the initial input routine, is inter-
active only to the extent of prompting the user for input. It allows a
maximum of 50 response points and does not allow a response point outside
of the span.

Response Routine (Beginning Statement Number 250)

The response routine initially adds the boundary moments to the
applied moment array (it is set up in this manner so that applied moments
are a simpler addition); similarly, the boundary forces are added to the
applied force array. Each response point is then compared to each
concentrated load position. If they coincide the response point is
moved to the right by the amount epsilon (response points at L are moved
to the left). With singularities avoided, the responses can be cal-
culated. For each response point, [kBl and [kN] are developed then
multiplied by (B) and (M), respectively. This routine prints on the
screen the response point that is being calculated.

Ouput Routine (Beginning Statement Number 3000)

The output routine formats and prints the calculated results and
user input. A 1DEBUG PRINTOUT" is optional as explained in the User
Instructions. Very large numbers can cause an illegal quantity error.

B-2
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USER INSTRUCTIONS

I. PROGRAM INPUT

A. Model Input.
1. Enter the foundation spring constant.
2. Enter the modulus of elasticity of the beam.
3. Enter the moment of inertia of the beam.
4. Enter the span of the beam.
5. Enter the number of continuous loads.

For Each Continuous Load

5a. Enter the position and value of the left end of the
continuous load in the format position, value.

5b. Repeat Step 6 for the right end of the continuous load.
5c. Enter the number of concentrated loads to approximate the

continuous load.
6. Enter the number of concentrated loads.

For Each Concentrated Load

Enter the position and value of the load in the format position,
value.

For Each Boundary Condition

7. Enter the numerical code of the known boundary value.
8. Enter the value of the known boundary condition.

Following the problem input, the program prints on the screen the
title of the major subroutines it enters. Within the matrix inversion
subroutine an accuracy test is performed. (For an explanation of the
individual subroutines see the METHODOLOGY section of this appendix.)

I. PROGRAM INPUT (Continued)

B. Response Input
1. Enter the number of response points where shear, moment,

displacement, and rotation are to be calculated.

For Each Response Point

2. Enter the position of the response point

The response subroutine prints the number of the response point
where the solution is being calculated. Following the last response
point the printing of the output begins.

B-3



II. PROGRAM OUTPUT

The user input and response output are always printed. The user
has the option to obtain a "DEBUG PRINTOUT." The "DEBUG PRINTOUT"
consists of a list of the concentrated loads that approximate the con-
tinuous loads and the boundary loads (boundary moments are not included).
The flexibility matrix and its inverse are also printed. Appendix C
contains a few printouts. The last problem includes an annotated copy
of the user interaction.

B-4
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Appendix C

BIN1D EXAMPLE PROBLEMS, BASIC VERSION
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BEAM ON AN ELASTIC FOUNDATION
INDIRECT BOUNDARY INTEGRAL METHOD
THEORY: DR. TED SHUGAR
PROGRAM: JAMES V. COX

USER INPUT

SPRING MODULUS OF MOMENT OF
CONSTANT ELASTICITY INERTIA SPAN

1000. 00 10000000. O0 25. )) 80. 00

CONCENTRATED
LOAD NO. POSITION VALUE

1 20. O0 1000)c0. O0
2 60. 00 1 )0000 0. O0

LEFT END RIGHT END

MOMENT = 0.00 MOMENT = 0.00
SHEAR = 0. 00 SHEAR = 0. 00

OUTPUT

RESPONSE
POINT NO. POSITION SHEAR MOMENT DISPLACEMENT ROTATION

1 01 C. 00 0.00 -3. 506 -. 070
2 10.00 31536.83 163395.97 2.803 -. 072
3 20.01 -44185.37 606177.57 2.024 -.087
4 30.00 -28616.21 250467.73 1.064 -. 103
5 40. 00 -23254.13 0. 00 0. 000 --.. 108
6 50.00 -28616.21 -250467.73 -1.064 -. 103
7 60.01 55782.23 -606084.80 -2.026 -. 087
8 70.00 31536.83 -163395.97 -2.803 -. 072
9 79.99 0.00 0.00 -3. 506 -. 070

C-11I



CONCENTRATED
LOAD NO. POSITION VALUE

3 0.00 145799.80
4 80.00 - 145799.80

6 MATRIX
-... 0 1 2 3
. 0 7.902 -. 500 -. 878 -. 0331 -. 500 .016 -. 033 0. 000

2 -. 878 .033 7.902 .500
3 .033 0. 000 .500 .016

GI MATRIX
0 1 2 3

0 -. 128 -4.086 9E-03 -. 639
1 -4.037 -64.853 .110 -13.050
2 9E-03 .639 -. 128 4.086
3 -. 110 --13. 050 4.037 -64.853

-13
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BEAM ON AN ELASTIC FOUNDATION
INDIRECT BOUNDARY INTEGRAL METHOD
THEORY: DR. TED SHUGAR
PROGRAM: JAMES V. COX

USER INPUT

SPRING MODULUS OF MOMENT OF
CONSTANT ELASTICITY INERTIA SPAN

1000. O0 10000000. 00 25. 00 40. 00

CONCENTRATED
LOAD NO. POSITION VALUE

1 20.0 100000.00

LEFT END RIGHT END

MOMENT = 0.00 DISPLACEMENT = 0.00
SHEAR = 0.00 MOMENT = 0. 00

OUTPUT

RESPONSE
POINT NO. POSITION SHEAR MOMENT DISPLACEMENT ROTATION

1 0. 00 0. 00 0. 00 3. 505 -. 070

2 10.00 31541.23 163486.32 2.802 --.072
3 20.00 -44196.82 606448.52 2.024 -.087
4 30.00 -28625.78 250496.21 1.064 -. 103
5 40.00 -23268.66 0.00 0. 000 -. 108

-C1
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CONCENTRATED
LOAD NO. POSITION VALUE

2 C. (00 145741.48
3 4o0 0 -77289.86

G MATRIX
0 1 2

0 7.904 -.500 -1.456 .043
1 -. 500 .016 .043 6E-03

2 0. 000 0. 000 0. 000 0. 000

3 -1.456 -. 043 7.904 .500

GI MATRIX
0 123

0 -. 138 -4.724 -32267.163 .065

1 -4.146 -77.903 -764819.603 1.226
2 -.022 .347 61323.234 -2E-03
3 -. 408 -.25.876 -1130194.410 2. 325

3
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BEAM ON AN ELASTIC FOUNDATION
INDIRECT BOUNDARY INTEGRAL METHOD
THEORY: DR. TED SHUGAR
PROGRAM: JAMES V. COX

USER I NPUT

SPRING MODULUS OF MOMENT OF

CONSTANT ELASTICITY INERTIA SPAN
1000.00 10000000.00 25. 0"o 80.00

CONTINUOUS LEFT END RIGHT END NO. OF LOADS
, LOAD NO. POSITION VALUE POSITION VALUE TO APPROXIMATE

, 1 0. 00 20. 00 80. 00 -20.00 20

LEFT END RIGHT END

MOMENT 0. 00 MOMENT 0. 00
SHEAR 0.00 SHEAR 0.00

OUTPUT

RESPONSE
POINT NO. POSITION SHEAR MOMENT DISPLACEMENT ROTATION

1 . 01 0.00 0. )0 .020 0. 000
2 10.01 -29.41 32.86 .015 0.000
3 20. 00 -. 74 3.34 .010 0.000
4 30.01 -9.81 11.93 5E-03 0.000
5 40. 00 -. 88 0. 00 0. 000 0. 000
6 50.01 10.11 -11.93 -5E-03 0.000
7 60.00 -. 74 -3. 34 -. 010 0.000
8 70.01 30.36 -32.85 --.015 0. 000
9 79.99 0.00 0. 00 -. 020 0. 000
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CONCENTFATED
LOAD NO. POS I T I ON VALIJE

1 2. 00 76. 00
6.00 68.00

~ 10.00 60.00

4 14. 0' 52.00

5 1.00 44.00

6 2. Q 00 36.00

7 26.00 28.0

8 30. 00 20.00

9 34.00 12.00

4 10 38. 00 4. 00
11 42.00 --4.00

46. 00 - 12. 00
1 " 50. Of) -20.0

14 54.00 -28. 00

15 59.00 -:.00

16 62.00 .- 44., 00

17 66.00 -". 00

18 7('.). 00 --60.00

19 74.00 -68.00

20 78.00 --76, 00

21 0.00 880. 14

22 80.00 -880.14

G MATRIX
0 1 2 3

0 7. 902 -. 500 --.878 -.033

1 -. 500 .016 --. 033 0. oo0

2 --. 876 .033 7.902 .500

3 .033 0.00(:) .500 .016

GI MATRIX

0 1 -1

0 -. 128 -4.086 9E-03 -. 639

£ 1 -4. 037 -64.853 .110 -13. 050

2 9E-03 .639 -. 128 4.086

3110 -13.050 4.037 -64.853

3
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*BEAM ON AN ELASTIC FOUNDATION
INDIRECT BOUNDARY INTEGRAL METHOD
THEORY: DR. TED SHUGAR
PROGRAM: JAMES V. COX

USER INPUT

SPRING MODULUS OF MOMENT OF
CONSTANT ELASTICITY INERTIA SPAN

1000. 00 1 ,")00000 0. 00 25. 00 40. 0 Y

CONTINUOUS LEFT END RIGHT END NO. OF LOADS
LOAD NO. POSITION VALUE POSITION VALUE TO APPROXIMATE

1 0". 0O . 40. Oki. C). (. 1f)

LEFT END RIGHT END

MOMENT = O. OO DISPLACEMENT = 0. (K
SHEAR =00- MOMENT = 0.0

OUTFUT

RESPONSE
POINT NO. POSITION SHEAR MOMENT DISPLACEMENT ROTATION

1 0.00 0. 00 0. .20 0 . 000
2 10.00 -29.43 33.0 015 0. 0(0,0
3 20. 00 -. 74 4.01 .010 0. 000
4 30. 00 -9.86 12.43 5E-03 0. 000
5 40. 00 -. 94 0. 00 0. 00)0) C). 000
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" "CONCENTRATED
- LOAD NO. POSITION VALUE

* 1 2. 00 76.00
2 6.00 68.00
1 3o. 00 60. 00
4 14. 00 52.00
5 18.00 44. 00
6 22.00 36. 0
7 26.00 28. 00
B 30.00 20. 00
9 34.00 12.00

10 3.8.00 4.00
11 0.00 879.82
12 40. 00 -250.66

G MATRIX
0 123

0 7.904 -.500 -1.456 .043
1 -. 500 .016 . 043 6E-03
2 0. 000 0 .000 C).000o 0. 000
3 -1.456 -. 043 7.904 .500

GI MATRIX
0 1 2 3

0 -. 138 -4.724 -32267.163 .065
1 -4.146 -77.903 -784819.603 1.226
2 -. 022 .347 61323.234 -2E-03
3 -. 408 -25.876 -1130194.410 2.325

if.1
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Annotated User Interaction

]RUN
BOUNDARY INTEGRAL METHOD

SPRING CONSTANT = 1000 *RESPONSE INPUT
E = 10E6
I = 25 NUMBER OF RESPONSE POINTS = 1 1
L. = 100 RESPONSE POINT 1 F'OSITION =
NUMBER OF CONTINUOUS LOADS = 1

RESPONSE POINT 2 POSITION =
CONTINUOUS LOAD NUMBER 1 1
POSITION AND VALI.-E OF LOAD ON RESPONSE POINT 3 POSITION
LEFT END = 20.200 20

-. POSITION AND VALUE OF LOAD ON RESPONSE POINT 4 POSITION =
RIGHT END = 60, 5003
NUMBER OF CONCENTRATED L"ADS TO APPROX- RESPONSE POINT 5 POSITION =
IMATE THE CONTINUOUS LOAi, 40

RESPONSE POINT 6 POSITION =
NUMBER OF CONCENTRATED LOADS = 1 50
CONCENTRATED LOAD NUMBER I RESPONSE POINT 7 POSITION =
POSTION AND VALUE OF LOAD = 80, 10E3 60

RESPONSE POINT 6 POSITION =
BOUNDARY CONDITION INPUT 70
ENTER APPROPRIATE NUMERIC CODE FOR KNOWN RESPONSE POINT 9 POSITIUN =

:' BOUNDARY CONDITION 8)
1. DISPLACEMENT RESPONSE POINT 10 POSITION =

2. ROTATION 90

3. MOMENT RESPONSE POINT 11 POSITION =
4. SHEAR 100

* RE-SPONSE
RESPONSE PT 1

LEFT BOUNDARY RESPONSE PT 2
RESPONSE PT 3

BOUNDARY CONDITION 1, CODE = I RESPONSE PT 4

DISPLACEMENT VALUE = C) RESPONSE PT 5
RESPONSE PT 6
RESPONSE PT 7

BOUNDARY CONDITION 2, CODE = 3
MOMENT VALUE = 0 RESPONSE PT 8

RESPONSE PT 9

RIGHT BOUNDARY RESPONSE PT 10
RESPONSE PT 11

BOUNDARY CONDITION 3, CODE = 2
ROTATION VALUE = 0

Underlined quantities represent user input
BOUNDARY CONDITI)N 4, CODE -indicatestheprintoutofasubroutine

SHEAR VALUE = 0 name

*GENERATING CONCENTRATED LOADS
* MATRIX DEVELOPEMENT
G MATRIX
HP MATRIX
*MATRIX INVERSION
INVERSION TEST = 4.17263406
*SOLVE FOR ACTUAL BEAM UNKNOWNS

-- 'C-19
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BEAM ON AN ELASIIC FOUNDATION
INDIRECT BOUNDARY INTEGRAL. METHOD
THEORY: DR. TED SHUGAR
PROGRAM: JAMES V. COX

USER INPUT

SPRING MODULUS OF MOMENT OF
CONSTANT ELASTICITY INERTIA SPAN

1000. 00 10000000. 00 25.00 100.00

CONTINUOUS LEFT END RIGHT END NO. OF LOADS
LOAD NO. POSITION VALUE POSITION VALUE TO APPROXIMATE

1 20. 00 200-. 00 60. 00 500. 00 20

CONCENTRATED
LOAD NO. POS ITI ON VALUE

a1 80. 00 1 000Q. 00

LEFT END RIGHT END

DISPLACEMENT = 0...0 ROTATION = 000
MOMENT = 0. 00 SHEAR = 0.00

., OUTPUT

RESPONSE
POINT NO. POSITION SHEAR MOMENT DISPLACEMENT ROTATION

1 .01 7596.64 0.00 0. 000 .028
2 10.00 8965.02 80464.25 .271 .026
3 20.00 12914.83 187869.61 .510 .021
4 30.00 790.72 252020.07 .675 .012
5 40.00 -6419.81 220317.12 .742 2E-03
6 50.00 -9662.24 137073.14 .722 -5E-03
7 60.00 -9651.91 38122.64 .649 -9E-03
8 70.00 -3616.04 -27461.57 .558 -9E-03
9 80.01 -8444.32 --37195.25 .477 -7E-03
10 90.00 -4005.30 -98869.39 .416 -4E-03
11 99.99 0.00 -118683.19 .393 0.000

DO YOU WANT THE DEBUG PRINTOUT (Y/N)?Y
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CONCENTRATED
LOAD NO. FOSITIO(N VALUE

2 1. 00 3925.00
3 2 3.0C0 C 3775. -0
4 '4,5. 00 '.:'625. 00

5 27.00 :3475.00
.6 29. 00 3325.00
7 100 175.00

9 7535. 2875.00
10 37.00 2725.00
11 19.00 2575.00
12 4 1. 00 2425. 00
13-11 43.00 2275.0C'
14 45.0C0 2125. 00

15 47.00 19-75. 00
16 49.00 J 025.00
17 51.00 1675.00
18 53. 0c) 1525.00
19 55.00 1375.00
20 57.00 1225.00
21 59.00 1075.00
22 0.00 -21444.46
23 100.00 12439.27

G MATRIX
0 1 2

0 0. 000 0. 000 0. 000 0. 000

1 7.'901 -. 500 -. 328 -. 021

2 0. 000 0. 000 0. 000 0. 000

3 .021 -IE-03 .500 .016

GI MATRIX
0 1 2 3

0 63152.345 0.000 41453.797 .086

1 998138.796 -1.998 1337181.850 .053

2 -2674.363 0.000 998913.625 1.996

3 43117.033 -.083-31576172.600 .025

C-21
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Appendix D

BIM2D1 LISTINGS
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PROGRAM BIM2D(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE7)
C
C MAIN PROGRAM
C

DIMENSION X(152),Y(152),BC(304),KBC(152),P(304),LNODE(5)
REAL MU,K(304,304),LAMDA
COMMON /CEES/ CO,C1,C2,C3,C4
MK = 304

C INPUT AND INPUT PRINT ROUTINES
CALL INFO(XYKBC ,BC,NOE,E,MLJIKPROB,LNODE,MK)
CALL INPRNT(X,Y,KBCBCNOE,E,MU,KPROB,LNODE)
PI = 2.*ACOS(O.)

C
C CALCULATIONS WHICH ARE FUNCTIONS OF THE MATERIAL ONLY
C

G - E/2./(1.+MU)
C PLANE STRAIN

LAHDA - E*MU/(1.+MU)/(l.-2.*MU)
C PLANE STRESS

IF(KPROB.EQ.O) LAMDA = 2.*LAMDA*G/(LAMDA+2.*G)
C

CO = 1. + 2.*(LAMDA+G)/G
C4 = PI*(LAMDA + 2.*G)
Cl = G/2./C4
C2 = (LAMDA+G)/C4
C3 = (LAMDA+3.*G)/4./C4/G
C4 = (LAMDA+G)/4./G/C4

C
C INFLUENCE MATRIX DEVELOPMENT ROUTINE

CALL KMAKER(NOE,LAMDA,G,PI,X,Y,K,KBC,MK,LNODE)
C
C
C SOLVE FOR ARTIFICIAL BOUNDARY LOADS

N = 2*NOE
CALL AXEQB(KP,BC,NMK)

C
C
C CALCULATE RESPONSE AT SPECIFIED POINTS

CALL RESPON(NOE,LAMDA,G,PIX,Y,PLNODE)
STOP
END
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SUBROUTINE MANUAL
C
C
C
C VARIABLE LIST

C
C A: A VALUE FOR NONSINGULAR INTEGRATIONS.
C B: " "

C BC(I),BC(II): BOUNDARY TRACTIONS OR DISPLACEMENTS FOR ELEMENT (1+1)/2
C CTHETM: COS(THETAM).
C CTHETN: COS(THETAN).
C CO: A CONSTANT FOR A GIVEN MATERIAL.
C Cl: " "

C C 2 : " "

C C 3 : " "

C C4: " "

C CSX: .EQ.O: CALCULATE SX RESPONSE AT A GIVEN POINT.
C CSY: " " S¥
C CT: " " T
C CU: " " U
C CV: " " V
C DL: ELEMENT LENGTH.
C DX: FOR A GIVEN ELEMENT = X(N) - X(N+1).
C DY: FOR A GIVEN ELEMENT = Y(N) - Y(N+1).
C E: MODULUS OF ELASTICITY.
C EC: SQUARE OF DISTANCE FROM CENTER OF M TO NODE 1 OF N.
C EE: X DISTANCE FROM CENTER OF M TO NODE I OF N.
C EG: Y DISTANCE FROM CENTER OF M TO NODE I OF N.
C EPSIL: A TOLERANCE USED TO DECIDE BETWEEN INTEGRAL EQUATIONS.
C G: SHEAR MODULUS OF ELASTICITY.
C GAMI: INTEGRATIONS OVER THE LENGTH OF ELEMENT N.
C it II

C II II

C . II *I

C GAMIO: " "

C I: (K) FIRST SUBSCRIPT.
C II: I+1
C J: (K) SECOND SUBSCRIPT.
C Jl: J+1
C JB: FLAG TO INDICATE A BOUNDARY RESPONSE POINT.
C K(I,J): INFLUENCE MATRIX TO OBTAIN ARTIFICIAL BUiNDARY LOADS.
C KBC(M): KNOWN BOUNDARY QUANTITIES .EQ.O: STRESSES AND .NE.O: DISPLACEMENTS.
C KPROB: .EQ.O: PLANE STRESS AND .NE.O: PLANE STRAIN.
C LAMDA: LAME' CONSTANT.
C LNODE(NBOUND): LAST NODE OF BOUNDARY NBOUND.
C M: OUTER LOOP ELEMENT NUMBER TO DEVELOP 2 (K) ROWS.
C MBOUND: A BOUNDARY NUMBER COUNTER.
C MI: M+l
C MK: MAXIMUM ORDER OF (K), NOE * 2
C MU: POISSON'S RATIO.
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C N: INNER LOOP ELEMENT NUMBER TO DEVELOP 2 (K) COLUMNS.
C NBOUND: A BOUNDARY NUMBER COUNTER.
C Ni: N+l
C NOE: NUMBER OF BOUNDARY ELEMENTS.
C P(I),P(I): ARTIFICIAL BOUNDARY LOADS AT ELEMENT (1+1)/2
C PI: 3.14159...
C THETAM: ANGLE OF ELEMENT M.
C THETAN: ANGLE OF ELEMENT N.
C STHETM: SIN(THETAM).
C STHETN: SIN(THETAN).
C SXN: SX INFLUENCE COEF DUE TO NORMAL BOUNDARY STRESS.
C SXT: SX INFLUENCE COEF DUE TO TANGENTIAL BOUNDARY STRESS.
C SXR: SX STRESS AT A GIVEN RESPONSE POINT.
C SYN: SY INFLUENCE COEF DUE TO NORMAL BOUNDARY STRESS.
C SYT: SY INFLUENCE COEF DUE TO TANGENTIAL BOUNDARY STRESS.
C SYR: SY STRESS AT A GIVEN RESPONSE POINT.
C TN: T INFLUENCE COEF DUE TO NORMAL BOUNDARY STRESS.
C TT: T INFLUENCE COEF DUE TO TANGENTIAL BOUNDARY STRESS.
C TR: T STRESS AT A GIVEN RESPONSE POINT.
C UN: U INFLUENCE COEF DUE TO NORMAL BOUNDARY STRESS.
C UP: UPPER LIMIT ON ELEMENT INTEGRATION.
C UT: U INFLUENCE COEF DUE TO TANGENTIAL BOUNDARY STRESS.
C UR: U DISPLACEMENT AT A GIVEN RESPONSE POINT.
C VN: V INFLUENCE COEF DUE TO NORMAL BOUNDARY STRESS.
C VT: V INFLUENCE COEF DUE TO TANGENTIAL BOUNDARY STRESS.
C VR: V DISPLACEMENT AT A GIVEN RESPONSE POINT.
C X(N): X COORDINATE OF NODE N, THE FIRST NODE OF ELEMENT N.
C XQM: X COORDINATE OF THE CENTER OF ELEMENT M.
C XR: X COORDINATE OF THE RESPONSE POINT.
C Y(N): Y COORDINATE OF NODE N, THE FIRST NODE OF ELEMENT 17.
C YQM: Y COORDINATE OF THE CENTER OF ELEMENT M.
C YR: Y COORDINATE OF THE RESPONSE POINT.
C
C
C
C INPUT FILE

4 C

C THE FOLLOWING DESCRIPTION OF THE INPUT FILE IS WRITTEN AS THOUGH
C A DECK OF CARDS IS BEING USED AS THE INPUT MEDIUM. ONE MUST
C REFER TO THE VARIABLE LIST TO USE THIS BREIF DESCRIPTION.
C
C
C CARD/SET DATA DESCRIPTION FORMAT
C
C 1 KPROB (PROBLEM TYPE: PL STRESS/PL STRAIN) (15)
C
C
C 2 E,MU (MATERIAL PROPERTIES) (E1O,FIO)
C
C
C 3 LNODE(1),...,LNODE(5) (LAST NODE NUMBERS) (515)
C
C

D-4
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C SET 4 BOUNDARY DESCRIPTION CARDS

C
C X(1),Y(1),KBC(1),BC(1),BC(2) (2F1O,I5,2FIO)
C .

C
.1 C

C X(NOE),Y(NOE),KBC(NOE),BC(2*NOE-1),BC(2*NOE)
C
C
C SET 5 RESPONSE SPECIFICATION CARDS
C IF THE USER INDICATES THAT THE RESPONSE IS BEING
C CALCULATED ON A BOUNDARY ELEMENT (JB.NE.0) THEN
C THE ELEMENT NUMBER (I) MUST BE ENTERED, AND BOTH
C XR AND YR ARE SET TO THE MID-ELEMENT COORDINATES.
C THE PROGRAM DOES NOT LIMIT THE NUMBER OF RESPONSE
C POINTS.
C
C JB,I,,XRYR,CSX,CSY,CT,CU,CV (215,2Fl0,515)

C . . . . . . . . .

C . . . . . .

C JB,I,,XR,YR,CSX,CSYCT,CU,CV
C
C
C
C SUBROUTINE LIST

* C
C THE FOLLOWING SUBROUTINE LIST INDICATES THE LEVELS OF HIERARCHY
C WITHIN THE PROGRAM, BUT DOES NOT COMPLETELY DEFINE THE FLOW
C OF EXECUTION. SOME OF THE SECOND ORDER, AND LOWER LEVEL,
C ROUTINES ARE NOT ALWAYS EXECUTED. FUNCTIONS ARE NOT LISTED.
C
C
C BIM2D: MAIN PROGRAM
C
C INFO: INPUTS DATA, EXCEPT FOR RESPONSE DATA.
C
C INPRNT: PRINTS THE INPUT DATA.
C
C KMAKER: GENERATES THE INFLUENCE COEFFICIENT MATRIX (K).
C PREK: CALCULATES THETAM, AND MATRIX ROW NUMBERS I AND Ii.
C PREK: CALCULATES THETAN, AND MATRIX COL NUMBERS J AND J1.
C PREGAM: CALCULATES VALUES IN PREPARATION FOR NONSINGULAR
C INTEGRATIONS, UP, EE, EG, A, B, AND EC.
C GAMMAF: CALCULATES NONSINGULAR INTEGRATIONS WHEN ELEMENT
C M BOUNDARY STRESSES ARE KNOWN.
C SXC: CONTROL ROUTINE FOR SXN AND SXT CALCULATIONS SENDS

CONTROL TO SINGULAR OR NONSINGULAR ROUTINE.
C SXNS: CALCULATES NONSINGULAR SXN AND SXT.
C SXS: CALCULATES SINGULAR SXN AND SXT.

C SYC: SY CONTROL ROUTINE.
C SYNS: NONSINGULAR CALCULATIONS.
C SYS: SINGULAR CALCULATIONS
C TC: T CONTROL ROUTINE.

D-5
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C TNS: NONSINGULAR CALCULATIONS.
C TS: SINGULAR CALCULATIONS.
C
C PREK: CALCULATES THETAN, AND MATRIX COL NUMBERS J AND J l.
C PREGAM: CALCULATES VALUES IN PREPARATION FOR NONSINGULAR
C INTEGRATIONS, UP, EE, EG, A, B, AND EC.
C GAMMAU: CALCULATES NONSINGULAR INTEGRATIONS WHEN ELEMENT
C M BOUNDARY DISPLACEMENTS ARE KNOWN.
C UC: U CONTROL ROUTINE.
C UNS: NONSINGULAR CALCULATIONS.
C US: SINGULAR CALCULATIONS.
C VC: V CONTROL ROUTINE.
C VNS: NONSINGULAR CALCULATIONS.
C VS: SINGULAR CALCULATIONS.
C
C AXEQB: MATRIX SOLUTION ROUTINE TO SOLVE FOR ARTIFICIAL
C BOUNDARY LOADS.
C FACTOR
C SUBST

*C
C RESPON: READS INPUT DATA FOR RESPONSE CALCULATIONS,
C CALCULATES THE USER SPECIFIED RESPONSES,
C AND PRINTS THE CALCULATED RESPONSES.
C THE ROUTINES CALLED FROM RESPON ARE NOT LISTED. THEY ARE
C MUCH THE SAME AS THOSE CALLED FROM KMAKER.
C

RETURN
END
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SUBROUTINE INFO(X,Y,KBC,BC,NOE,E,MU,KPROB,LNODE,MK)
- %, C

C THIS ROUTINE READS ALL THE INPUT DATA EXCEPT FOR THE RESPONSE

C POINT DATA. A TRAILER CARD IS USED TO INDICATE THE END OF THE

C ELEMENT INPUT, AND THE NUMBER OF ELEMENTS IS COUNTED TO
C PREVENT TOO MANY ELEMENTS.
C

DIMENSION X(1),Y(1),KBC(1),BC(1),LNODE(1)

REAL MU

C
C ENTER PROBLEM TYPE, PLANE STRAIN OR PLANE STRESS.

C
READ(5,1000) KPROB

1000 FORMAT(I5)

C
C ENTER MATERIAL PROPERTIES

C
READ(5,1010) E,MU

1010 FORMAT(ElO.3,FLO.3)

C
C ENTER LAST NODE NUMBER FOR EACH BOUNDARY
C

READ(5,1050) (LNODE(I),I=1,5)
1050 FORMAT(515)

C
C LOOP FOR ELEMENT INPUT

C
C INITIALIZE

NOE - 0
N=O

C
10 N N + 1

I - 2*N - 1
II - I + 1

C CHECK FOR EXCESSIVE ELEMENT INPUT
IF(N.GT.MK/2) GO TO 20

C
C ELEMENT INPUT

READ(5,1020)X(N) ,Y(N) ,KBC(N) ,BC(I),BC(II)
1020 FORMAT(2FO.3,10,2F10.3)
C
C CHECK FOR TRAILER

IF(X(N).GT.7.777E+6) RETURN
NOE - N
GO TO 10

C
C
C N .GT. 1K/2

"'* C
20 READ(5,1030)TR

,-
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1030 FORMAT(Fl0.3)
IF(TR.GT.7.777E+6) RETURN
N-HK/ 2
WRITE(6,1040) N

1040 FORMAT(IHO,38HNUMBER OF ELEMENTS EXCEEDS MAXIMUM OF ,I2,1H.)
STOP
END

SUBROUTINE INPRNT(X,Y,KBC ,BC,NOEE,MU,KPROB,LNODE)
C
C THIS ROUTINE PRINTS THE INPUT DATA, NOT INCLUDING RESPONSE INPUT,

4C IN TABULAR FORM.
C

DIMENSION X(1),Y(1),KBC(1),BC(1),LNODE(l)
A. REAL MU

C
C PRINT PROGRAM TITLE

WRITE(6, 1000)
1000 FORMAT(1H1)
1010 FORMAT(LX,T22 ,36H************************************)
1020 FORMAT(1X,T22,1H*)
1025 FORMAT(1X,T22,1H*,T57,1H*)
1030 FORMAT(LH+,T57,lH*)

WRITE(6,1010)
WRITE(6, 1025)
WRITE (6 ,1025)
WRITE(6,1020)
WRITE(6,1040)

11040 FORMAT(1H+,T37,5HBIM2D)
* WRITE(6,1030)

WRITE(6,1025)
WRITE(6, 1020)
WRITE(6, 1050)

1050 FORMAT(1H+,T27,27HA BOUNDARY INTEGRAL PROGRAM)
WRITE(6,1030)
WRITE(6,1020)
WRITE(6,1060)

1060 FORMAT(1H+,T27,29HF0R 2D ELASTOSTATICS PROBLEMS)
WRITE(6,1030)

-, WRITE(6,1025)
WRITE(6 .1020)

-, WRITE(6,1070)
1070 FORMAT(1iH+,T32,17HDEVELOPED AT NCEL)

WRITE(6,1030)
WRTE6105

WRITE(6,1025)
WRITE(6,1025)

WRITE(6.1080)
1080 FORMAT(//I//I/)
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C
WRITE(6, 1110)
IF(KPROB.EQ.O) WRITE(6. 1090)
IF(KPROB.NE.0) WRITE(6,1100)

1110 FORMAT(1XI,24HPROBLEM TYPE: PLANE STR)
1090 FORMAT(lH+,T26,3HESS)
1100 FORMAT(LH+,T26,3HAIN)
C
C MATERIAL PROPERTIES

WRITE(6, 1120)
1120 FORMAT(1H0,2OHMATERIAL PROPERTIES ,T30, lHE,T45 ,2HMU)

110WRITE(6,1130) EMU
110FORMAT(1XT22,EIO.3,T39,F1O.3)

C MLIL ONAYLS OE
CWULILE(BOUNDARY(LANODES I15
120FRMT( ,2 19HBODARY AST ODES515

120C RA(H,9BUDR ATNDS55
C EEETDT

CWRLTEENT 1140)
11 0 FR MT (,1 0 H L MN)A A
110 WRT(, 1H L M 1150)

1150 FORMAT(1XT1O,3HNO.,T25,LHX,T35,LHY,T41,8HKNOWN BCT55,3HBCI,

&T65,3HBC2)

DO 10 N-i ,NOE
WRITE(6,1160)N,X(N) ,Y(N)

1160 FORMAT(lX,I12,FIO.3,FLO.3)
IF(KBC(N).EQ.O) WRITE(6,1170)

1170 FORMAT(1H+,T45,lHF)
-~ IF(KBC(N).NE.0) WRITE(6,1180)

1180 FORMAT(LH+,T45, 1HU)
I 2*N 1
Il -I +1

110WRITE(6,1190)BC(I) ,BC(I1)
110 FORMAT(1H+,T50,2F10.3)

10 CONTINUE
RETURN
END

SUBROUTINE KMAKER(NOELAMDA,G,PI,X,YK,KBC,MK,LNODE)
C
C MATRIX GENERATION ROUTINE
C THIS ROUTINE DEVELOPS (K) FOR THE EQUATION (K)(P)-(BC).
C WHERE (P) IS THE THE COLUMN M4ATRIX OF ARTIFICIAL BOUNDARY
C STRESSES AND (BC) IS THE COLUMN MATRIX OF KNOWN
C BOUNDARY CONDITIONS.
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C
DIMENSION X(l),Y(l),KBC(1),LNODE(l)
REAL K(HK,1), LANDA
COIIMOl PSHOEI FORF1R,F2R.F3R,F4R,F01,Fll,F21,F31.F41,F02,F12,
&F22 ,F32,F42 ,FLG
COMMON /CEES/ COC1.C2,C3,C4

C
C SET BOUNDARY NUMBER

MEOUND - 1.
DO 10 M-1,NOE
IF (H. GT.*LNODE (MEOUND)) HBOUND - HBOUND + 1
CALL PREK(M,M1,I,1.STHETMCTHEThSIDL,X,Y,LNODE,HBOUND)
XQM - (X(M).X(M1))/2.
YQM = (Y(M)+Y(M1))/2.
NEOUND - 1
IF(KBC(M).NE.O) GO TO 20

*C BOUNDARY STRESSES KNOWN
DO 30 Ninl,NOE
IF (N.GT.LNODE(NBOUND)) NBOUND - NBOUND + 1
CALL PREK(N,N1,JJ1STHETNCTHETNDLIXY,LNODE,NBOUND)
IF(I.EQ.J) GO TO 40

C FOR NONSINGULARITY
CALL PREGAM(UP,DL,AB,EC,EEEGXQMYQMX,YCTETN,
&STHETNN)
CALL GAIMAF(A,B,EC,UP,GAMI,GAM2,GAM3,GAM4,IGAH5,GAM6,EE,CTHETN,

&EG, STHETN)
40 CALL SXC(SXNSXTSTHETNCTHETN,GAM1,GAM2,LAMDA,G,I,J)

CALL SYC(SYN,SYTSTHETNCTHETN,GAM3,GAM4LAMDA,G,IJ)
CALL TC(TNTT,STHETNCTHETNGAM5,GAM6,LAMDA,GI,J)
K(I ,J) - STHETM*STHETM*SXN + CTHETM*CTHETM*SYN-

&2 **STHETM*CTflETM*TN

K(IJI) - STHETM*STHETH*SXT + CTRETH*CTHIiET*SYT-
* * STHETH*CTHETM*TT

K(11 ,J) - -CTHETM*STHETM*SXN + CTHETM*STHETM*SYN +
& (CTHE1'H*CTHETH - STBETM* STHETM) *T
K(I1,J1) - -CTHETM*STHETM*SXT + CTHETM*STHETM*SYT +

& (CTEETh*CTHETM - STHETM*STHETM) *TT
30 CONTINUE

GO TO 10
C
C
C BOUNDARY DISPLACEMENTS KNOWN
20 DO 50 N-1,NOE

IF (N.GT.LNODE(NBOUND)) NBOUND - NBOUND + 1
CALL PREK(N,N1,J,J1,STHETNCTHETN,DL,XYLNODENBOUND)
IF(I.EQ.J) GO TO 60

C FOR NONSINGULARITY
CALL PREGAM(UPDL,ABEC,EEG.XQMsYQMIXY.CTHETN.
ISTHETNN)
CALL GAIHAU(A,B,EC,UP,GAM7,GAM8,GAM9,GAH1O,EE,CTHETN,EGSTHETN)

60 CALL UC(UNUT,STHBTN,CTHETNGAM7,GAN8,DLC3,C4,I,J)
CALL VC(VNVTSiHETN,CTS ZTN GAM9,GAM10,DL,C3 ,C4 ,1,J)
K(I~j) -UN
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K(IJi) - UT
K(Ii,J) - VN
K(IiJi) = VT

50 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE PREIC(N,Ni ,JJi STIETN,CTHETN,DL,X,Y,LNODE,4BOUND)
C

Mt -C DETERMINES ELEMENT ANGLE AND SEVERAL ARRAY INDICES
CC

C DIMENSION X(i),Y(1),LNODE(i)

NI - N+i
*IF (N.EQ.LNODE(NBOUND).AND.NBOUND.EQ.1) NI-i

IF (N.EQ.LNODE(NBOUND) .AND.NBOUND.NE.1) Ni-LNODE(NBOUND-i)+i
DX - X(Ni) - X(N)

*DY - Y(Ni) - Y(N)
DL - SQRT(DX*DX + DY*DY)
STHETN - DY/DL
CTHETN - DX/DL
J -2"N - I
Ji -J + 1
RETURN
END

SUBROUTINE PREGAM(UPIDLIAB,EC,EE,EG,XQH,YQM,XY,CTHETN,
&STHETNN)

C
C DETERMINES SEVERAL VALUES IN PREPARATION FOR NONSINGULAR
C INTEGRATIONS
C

DIMENSION X(i),Y(i)
UP - DL
ER - SQl! - X(N)
EG - YQH - Y(N)
A -1.

B -- 2.**(CThETh*EE + STHETN*EG)
EC - EE*EE + EGE
RETURN
END
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SUBROUTINE GAMKAF(A,B,C,UP.GA4L GAM2,GAM3,GAM4,GAN5,GAM6s
1K F ,G,H)

C
C CALCULATES NONSINGULAR, INTEGRATIONS WHEN BOUNDARY STRESSES
C ARE KNOWN.
C

COMON /SHOE/ FORF1RF2R,F3R,F4R,F01,FL1,F21,F31,F41,
1 F02,Fl2,F22,F32,F42,FLG
COMMON /CEES/ CO,C1,C2,C3,C4
FOI-SOl (AB,C,UP)
F1L-S11(A,BCUP)
702-S02(A,BC,UP)
F12-S12(A,BC,UP)
F22-S22(AB,CUP)
F32-S32(A,BC,UP)
QImE*FO1-F*F1 1
Q2-G*FOI-H*F1 1
Q3-E*G*G*FO2-(2 .*E*G*H+G*G*F)*F12+ (E*H*H+2.**F*G*H)*F22-.F*H*H*F32
Q4-E*E*G*FO2- (2. *E*F*G+E*E*H) *Fl 2+(F*F*G+2.**E*F*H) *F22-.F*F*H*F32
GAMI=-CO*C1 *Q1.C2*Q3
GAM2.C1*Q2-C2*Q4
GhJI3--CO*C1 *Q2+C2*Q4
GAH4inC1*Q1-C2*Q3
GAM5-C1*Q2+C2*Q4
GAM6mCl*Q1+C2*Q3
RETURN
END

SUBROUTINE GAMU(A,B,C,up,GAm7,GAm8,GAM9,GAmio,
IEF,0, H)

C
C CALCULATES NONSINGULAR, INTEGRATIONS WHEN BOUNDARY DISPLACEMENTES
C ARE KNOWN.
C

COMMON /SHOE/ FOR,FIR,F2R,F3R,F4RFOI,FllF21,F31,F41,
1 F02,Fl2,F22,F32,F42,FLG

COMMON /CEES/ CO,C,C2,C3,C4
FOImSO (ABCUP)
F11-S1I (ABC SUP)
F21-S21 (AB,CUP)
FLG-SLG(A,B,CUP)
Q5-G*G*FOI-2.***Fl 1H*H*F2 1
Q6mE*E*FOI-2.*E*F*F1 1+F*F*F21
Q7mE*G*FO1-(E*H+F*G)*F1 1,F*li*F21
Q8-FLG
GAM7m-C3*Q8 -4*Q5

4 GAMHSC4*Q7
GA(9m..C3*Q8-C4*Q6
GAMIO-C4*Q7

END
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FUNCTION S01(ABC,UP)
COMMON /SHOE/ FOR,F1RF2R,F3R,F4R,FOIF11F21,F31,F41,
I F02,F12,F22,F32,F42,FLG

FUNi (X) -2. /R*ATAN ((2. *A*X+B) /R)
FUN2(X)-2 .1(2.*A*X+B)
FUN3(X)' . /R*ALOG((2.*A*X+B-R) /(2 .*A*X+B.R))
AC-B*B - 4.*A*C

R.'SQRT(ABS(BAC))
EPSIL - 1.OE-10
IF(BAC.GE.-EPSIL.AND.BAC.LE.EPSIL) GO TO 2
IF(BAC) 1,2,3

1 SOI-FUNI(UP)-FUN1(0.)
RETURN

2 SO1-FUN2(UP)-FUN2(0.)
RETURN

3 S01-FUN3(UP)-FUN3(0.)
RETURN'
END

FUNCTION S11(A,B,C,UP)
COMMON /SHOE/ FOR,FIR,F2R,F3R,F4R,F01,F11,F21,F31,F41,
1 F02,Fl2,F22,F32,F42,nLG

FUN(X)-1 .1(2.*A)*ALOG(A*X*X+B*X+C)
SllkFUN(UP)-FUN(O.)-B/ (2.*A)*FOI
RETURN

FUNCTION S21(A,B,C,UP)
COMMON /SHOE/ FOR,FIR,F2R,F3R,F4R,FO1,F11,F21,F31,F41,
1 F02,F12,F22,F32,F42,FLG

FUN(X)-X/A-B/ (2.*A)*ALOG(A*X*X+B*X+C)
S21-FUN(UP)-FUN(O.)+(B*B-2.*A*C) /(2.*A*A)*FO1
RETURN
END

FUNCTION S02(A,B,C,UP)
COMMON /SHOE/ FOR,FIR,F2R,F3R,F4R,FOI,Fll,F21,F31,F41,
I F02,F12,F22,F32,P42,FLG

FUNI (X)-(2.*A*X*B)/( (-BAC)*(A*X*X.B*X.C))
FUN2 (X)-- . /A/A/3.I (B12. /A.X)**3.
BAC - 3*3 - 4.*A*C
EPSIL - 1.OE-10
IF(3AC.GE.-EPSIL.AND.BAC.LE.EPSIL) GO TO 2
IF(BAC) 1,2,1

1 S02-FUNI(UP)-FUNI(O. )+2.*A/(-BAC)*FOl
RETURN

2 S02-7U12 (UP) -FUN2 (0.)

END
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FUNCTION S12(A,BC,UP)
COMMON /SHOE/ FOR,FIR,F2R,F3RF4R,FOLFll,F2l,F31,F41,
I F02.Fl2,F22,F32,F42,FLG

FUNL (X)--(2.*C+B*X)/((-BAC)*(A*X*X+B*X+C))
FUN2(X)--(B/2.+3.*A*X)/(3.*A*Xe1.5*B)
BAC - B*B - 4.*A*C
EPSIL - 1.OE-1O
IF(BAC.GE.-EPSIL.AND.BAC.LE.EPSIL) GO TO 2
IF(BAC) 1,2,1

1 S12-FUN1(UP)-FUN1(O.)-B/(-BAC)*FOI
RETURN

2 S12-FUN2(UP)-FUN2(O.)
RETURN
END

FUNCTION S22(A,BCUP)
COMMON /SHOE/ FOR,FlR,F2R,F3R,F4RFOLFll,F21,F31,F41,
I F02,Fl2,F22,F32,F42,FLG

FUN(X)--X/ (A* (A*X*X+B*X+C))
S22-FUN(UP)-FUN(O. )+C/A*F02
RETURN
END

FUNCTION S32(A,BC,UP)
COMM3 /SHOE/ FOR,FlR,F2R.F3R.F4RFO,FI1,F2l.F3l,F41,
I F02,F12,F22,F32,42,FLG

FUN (X) -X*XI (A* (A*X*Xe5*X.C))
S32-FUN(UP)-FUN(0. ).FI1/A+eC*1r2/A
RETURN
END

FUNCTION SLG(A,BC,UP)
COMMD /5301/ FORFlR.F2R,F3RF4RFO1FI1,F21,F31,F41,
I F02,F12,F22,F32,142,FLG

FIJN(X) X*ALOG(SQRT(A*X*XB*KC))
SLG-MFIJ(U)-A*F21-I* .5*FI I

END
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SUBROUTINE SXC(SXN, SXT,STRETNCTHETN,GAMI,GAM2,LAMDA,G,I,J)
C
C SX CONTROL ROUTINE TO DECIDE BETWEEN SINGULAR AND NONSINGULAR
C INFLUENCE COEFFICIENTS.
C

REAL LAMDA
IF (I.EQ.J) GO TO 10

C NONSINGULAR
CALL SXNS(SXNSXTSTHETN,CTHETN,GAM1,GAM2)
RETURN

C SINGULAR
10 CALL SXS(SXNSXT,STHETN,CTHETN,LAMDA,G)

RETURN
END

SUBROUTINE SXNS (SXN, SXT, STHETN, CTHETN, GAMI,GAM2)
C
C SIGMA X INFLUENCE COEFS FOR NONSINGULARITY CONDITIONS
C

SXN - -STHETN*GAM1 + CTHETN*GAM2
SXT - CTHETN*GAMl + STHETN*GAM2
RETURN
END

SUBROUTINE SXS (SXN, SXT, STHETN , CTHETN,LAMDA, G)
C
C SIGMA X INFLUENCE COEFS FOR SINGULARITY CONDITIONS
C

REAL LANDA
SXN - (LAMDA + 2.*G*STHETN*STIIETN) /2. /(LAMDA + 2.*G)
SXT - -STHETN*CTHETN
RETURN
END

SUBROUTINE SYC(SYN,SYT,STHETN,CTHETNGAM3,GAM4,LAMDAGI,J)
C
C SY CONTROL ROUTINE
C

REAL LAMDA
IF (I.EQ.J) GO TO 10

C NONSINGULAR
CALL SYNS (SYN, SYT, STHETN, CTHETN ,GAM3 ,GAM4)
RETURN

C SINGULAR
10 CALL SYS(SYNSYT,STETN,CTHETN,LAMDA,G)

RETURN
END
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SUBROUTINE SYNS (SYNS SYT,STHETN,CTHETN ,GAM3 ,GAM4)

C SIGMA Y INFLUENCE COEFS FOR NONSINGULARITY CONDITIONS
C

SN- CTHETN*GAM3 - STHETN*GAM4
SYT - STHETN*GAM3 + CTHETN*GAm4
RETURN
END

SUBROUTINE SYS(SYNSYT, STHETNCTHETNLAIDAG)
C
C SIGMA Y INFLUENCE COEFS FOR SINGULARITY CONDITIONS
C

REAL LA14DA
SYN - (LAMDA + 2.*G*CTHETN*CTHETN) /2. /(LAMDA +2.*G)
SYT - STHETN*CTHETN
RETURN
END

SUBROUTINE TC(TNTT,STHETN,CTHETN,GAM5,GAM6,LAMDA,G,I,J)
C

3C TAU CONTROL ROUTINE
C

REAL LAMDA
IF (I.EQ.J) GO TO 10

C NONSINGULAR
CALL TNS (TNTT ,STHETNCTHETN ,GAM5 ,GAM6)
RETURN

C SINGULAR
10 CALL TS(TN,TT,STHETN,CTIETI4,LAMDAG)

RETURN
END

SUBROUTINE TNS (TN .TT, STHETN ,CTHETN ,GAM5 ,GAM6)
C
C TAU INFLUENCE COEFS FOR NONSINGULARITY CONDITIONS
C

TN - STHETN*GAM5 -CTHETN*GAM6

TT - -CTHETN*GhM5 -STHETN*GAM6

RETURN
END
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SUBROUTINE TS(TN,TTSTHETN,CTHETNLAMDAG)
C
C TAU INFLUENCE COEFS FOR SINGULARITY CONDITIONS
C.

REAL LAMDA
T- -G /(LAMDA + 2. *G) *STHETN*CTHETN
T- -.5 *(STHETN*STHETN - CTHETN*CTHETN)

RETURN
END

SUBROUTINE UC(UN,UT,STHETN,CTHETN,GAM7GAM8,DL,C3,C4IJ)
C
C U CONTROL ROUTINE
C

IF (I.EQ.J) GO TO 10
C NONSINGULAR

CALL UNS (UN ,UTSTHETN,*CTHETN .GA47 ,GAM8)
RETURN

C SINGULAR
10 CALL US(UN,UTSTHETN.CTHETNDLC3,C4)

RETURN
END

SUBROUTINE UNS (UN,TSTHETN,*CTHETN ,GA147 GAM8)
C
C U INFLUENCE COEFS FOR NONSINGULARITY CONDITIONS
C

UN - -STHETN*GA147 + CTHETN*GA18
UT - CTETN*GAI7 + STHETN*CAM8

END

SUBROUTINE US (UN,UT ,STHETN ,CTHETN ,DL, C3 ,C4)
C
C U INFLUENCE COEPS FOR SINGULARITY CONDITIONS
C

UN - DL *STRETH * (C3*(ALOG(DL/2.) -1.) + C4)
UT - -C3 *(ALOG(DL/2.) -1.) * DL *CTHETN
RETURN

* END
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SUBROUTINE VC(VN,VT,STHETNIICTHETN,GAM9,GAM1O,DL,C3,C4,I,J)
C
C V CONTROL ROUTINE
C

IF (I.EQ.J) GO TO 10
C NONSINGULAR.

CALL VNS(VNVT,STHETN,CTHETN,GAM9,GAMIO)
RETURN

C SINGULAR
10 CALL VS(VN,VT,STHETN,CTHETN,DLC3,C4)

RETURN
END

SUBROUTINE VNS(VNVTIISTHETNCTHETN,GAM9 ,GAM1O)
C
C V INFLUENCE COEFS FOR NONSINGULARITY CONDITIONS
C

VN - CTHETN*GAM9 - STHETN*GAM1O
VT - STHETN*GAM9 + CTHETN*GAMIO
RETURN
END

SUBROUTINE VS(VNVTSTETN,CTHETN,DLC3,C4)
C
c V INFLUENCE COEFS FOR SINGULARITY CONDITIONS
C

VN - -DL * CTUETN * (C3*(ALOG(DL/2.) -1.) + C4)
VT - -C3 * (ALOG(DL/2.) -1.) * DL * STHETNl
RETURN
END
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SUBROUTINE AXEQB(A,X,B ,N ,M)
DIMENSION A(M,1), X(1), B(1), IPIVOT(304), D(304), W(304,304)

C
C THIS SUBROUTINE SOLVES THE LINEAR SYSTEM AX = B
C IN THIS APPLICATION THE ARTIFICIAL BOUNDARY STRESSES ARE SOLVED FOR

S C

CALL FACTOR (AA,IPIVOT,D,N,IFLAG,M)
IF (IFLAG .EQ. 1) GO TO 10
WRITE (6,1000)
STOP

4 10 CONTINUE
DO 100 1 = IN

100 X(I) = 0.0
CALL SUBST (A,B,X,IPIVOTN,M)

$ - RETURN
1000 FORMAT(19H1MATRIX IS SINGULAR)

END

SUBROUTINE FACTOR(AW,IPIVOT,D,N,IFLAG,M)
DIMENSION A(H,1),IPIVOT(1),D(1)
DIMENSION W(M,l)
IFLAG -1

- ~C INITIALIZE W, IPIVOT, D
DO 10 Iinl,N
IPIVOT(I) = I
ROWMAX - 0.
DO 9 J - 1,N
W(I,J) - A(I,J)

9 ROWtMAX - AMAXI(ROWMAX,ABS(W(I,J)))
1IF (ROWMAX .EQ. 0.) GO TO 999
1D(I) - ROWNAX

C GAUSS ELIMINATION WITH SCALED PARTIAL PIVOTING.
NMI - N-i
IF (NMI .EQ. 0) RETURN
DO 20 K - 1,NML
J =K
KPI K+ I
IP -IPIVOT(K)
COLMAX ABS(W(IP,K))/D(IP)
DO 11 1 KP1,N
IP - IPIVOT(I)
AWIKOV - ABS(W(IP,K))/D(IP)
IF (AWIKOV .LE. COLMAX) GO TO 11
COLMAX - AWIKOV
J - I

11 CONTINUE

IF (COLMAX .EQ. 0.) GO TO 999

IPK - IPIVOT(J)

IPIVOT(J) - IPIVOT(K)
IPIVOT(K) - IPK
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DO 20 I - KP1,N
IP - IPIVOT(I)
W(IP,K) - W(IPK)/W(IPK,K)
RATIO - -W(IP,K)
DO 203J- KPIN

20 W(IPJ) - RATIO*W(IPKJ) + W(IP,J)
4 IF (W(IP,N) .EQ. 0.) GO TO 999

RETURN
999 IFAG -2

RETURN
END

SUBROUTIKE SUBST(W,B ,X, IPIVOTN,M)
DIMENSION W(M,1),B(1),X(l),IPIVOT(1)
IF (N.GT.1) GO TO 10

RETURN
10 IP - IPIVOT(1)

X(l) - B(IP)
DO 15 K - 2,N
IP - IPIVOT(K)
ICHI - K-1
SUM = 0.
DO 14 3- 1,KML

14 SUM - W(IP,J)*X(J) +SUM
15 X(K) - B(IP) - SUM

c
X(N) - X(N)/W(IP,N)
K -N
DO 20 NP1MK - 2,N
KP - K
K -K- 1
IP -IPIVOT(K)
SUM - 0.
DO 19 J -KPN

19 sum - W(IP.J)*X(J) + sum
20 X(K) - (X(K) -SUM)/W(IPK)

RETURN
END
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SUBROUTINE RESPON (NOE,LAMDA,G,PI,X,Y,P,LNODE)
C
C THIS ROUTINE CALCULATES THE RESPONSE AT EACH USER DEFINED
C POINT OF INTEREST. THE RESULTS ARE SENT TO DEVICE 6, WHICH
C IS INITIALLY OUTPUT.
C THE USER HAS THE OPTION OF DEFINING THE RESPONSE POINT
C AS WITHIN OR ON THE BOUNDARY. FOR THAT GIVEN POINT HE ALSO
C HAS THE OPTION OF WHICH RESPONSES TO CALCULATE.
C

COMMON/CEES/CO,C1 ,C2,C3,C4
DIMENSION X(1),Y(1),P(1),LNODE()
INTEGER CSX, CSYCT,CU,CV
REAL LAMDA

C
C PRINT OUTPUT HEADER

WRITE(6,3000)
3000 FORMAT(lH1,T4,8HRESPONSE/lX,T4,8H ------- )

WRITE(6,3010)
3010 FORMAT(1H0,T4,7HELEENT,T6,1HX,T26,IHY,T36,2HSX,T46,2HSY,T56,1HT

&,T66,lHU,T76,1HV/)
C
C RESPONSE POINT CALCULATION LOOP
C
10 READ(5,3015)JB,I,XR,YR,CSX,CSY,CTCU,CV
3015 FORMAT(2I5,2FI0.0,515)

IF(JB.EQ.77777) RETURN
IF(JB.EQ.0) GO TO 20

C RESPONSE AT A BOUNDARY ELEMENT
WRITE(6,3020)I

3020 FORMAT(IX,T5,I5)
I - I + 1

C
C DETERMINE LAST NODE NUMBER

DO 15 N-1,5
IF(LNODE(N).EQ.0) GO TO 16
IF(I.EQ.LNODE(N).AND.N.EQ.1) Il-1

15 IF(I.EQ.LNODE(N).AND.N.NE.1) 11-LNODE(N-I)+1
C
16 xR - (X(I) + X(I1))/2.

YR - (Y(I) + Y(I))/2.
GO TO 30

C RESPONSE NOT AT A BOUNDARY ELEMENT
20 WRITE(6,3030)XRYR
3030 FORMAT(IX,T11,2F10.3)

1=0

C INITIALIZE THE RESPONSES
30 SXR - 0.

SYR - 0.
TR - 0.
UR - 0.
VR - 0.
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C INITIALIZE BOUNDARY NUMBER
N BOUND-i

C FOR EACH LOAD (ASSUMES BOUNDARY LOADS ONLY)
C

DO 40 N-1NOE
IF(N. GT. LNODE(NBOUND)) NBOUND=NBOUND+l
CALL PREK(N,N1,JJ1,STHETN,CTHETN,DL,XY,LNODE,NBOUND)
CALL PREGAM(UP,DL,A,B,EC,EE,EG,XR,YR,X,Y,CTHETN,STHETN,N)
IF(CSX.NE.O.AND.CSY.NE.O.AND.CT.NE.O) GO TO 50

C THERE ARE STRESS CALCULATIONS
CALL GAMMAF(A,B,EC,UP,GAM1,GAM2,CAM3,GAM4,GAM5,GAM6,EEICTHETN,

&EG,ISTHETN)
IF(CSX.NE.0) GO TO 60
CALL SXC(SXN,SXT,STHETN,CTHETNGAM1,GAM2,LAMDA,G,IN)
SXR - SXR + SXN*P(J) + SXT*P(J1)

60 IF(CSY.NE.0) GO TO 70
CALL SYC(SYN,SYT,STHETN,CTHETN,GAM3,IGAM4,LAMDA,G,I,N)
SYR - SYR + SYN*P(J) + SYT*P(J1)

70 IF(CT.NE.O) GO TO 50
CALL TC(TN,TTSTHETN,CTHETN,GAM5,GAM6,LAMDA,G,I,N)
TR - TR + TN*P(J) + TT*P(J1)

50 IF(CU.NE.O.AND.CV.NE.O) GO TO 40
C THERE ARE DISPLACEMENT CALCULATIONS

CALL GAIMAU(A,B,ECUP,GAM7,GAM8,GAM9,GAMIO,EECTHETN,EG,STHETN)
IF(CU.NE.0) GO TO 80
CALL UC(UN,UT,STHETNCTHETNGAM7,GAM8,LAMDA,G,I,N)

UR-UR + UN*P(J) + UT*P(J1)
80 IF(CV.NE.0) GO TO 40

CALL VC(VN,VT,STHETN,CTHETN,GAM9,GAMLO,LAMDA,GI,N)
V- VR + VN*P(J) + VT*P(JL)

40 CONTINUE
C INDIVIDUAL RESPOPNSE POINT PRINT OUT

IF(CSX.NE.0) GO TO 90
WRITE(6,3400) SXR

3400 F0RMAT(1H+,T31,ElO.3)
90 IF(CSY.NE.0) GO TO 100

WRITE(6,3500) SYR
3500 F0RMAT(1H+,T41,E10.3)
100 IF(CT.NE.O) GO TO 110

WRITE(6,3600) TR
3600 FORMAT(1U+,T51,ElO.3)
110 IF(CU.NE.0) GO TO 120

WRITE(6,3700) UR
43700 FORMAT(1H+,T61,E10.3)

120 IF(CV.NE.O) GO TO 130
WRITE(6,3800) VR

3800 FORMAT(lH+,T71,El0.3)
C MAKE OUTPUT FILE (TAPE7) FOR PLOTTING.
130 IF(JB.NE.0) GO TO 10

WRITE(7,4000) XRYR,SXR,SYR,TRUR,VR
4000 FORMAT(2FI0.4,5E15.6)

GO TO 10
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